Note on the Ostrowski Type Inequalities for Fractional Integrals

被引:12
作者
Sarikaya M.Z. [1 ]
Filiz H. [1 ]
机构
[1] Department of Mathematics, Düzce University, Düzce
关键词
Hölder inequality; Ostrowski's inequality; Riemann-Liouville fractional integration;
D O I
10.1007/s10013-014-0056-4
中图分类号
学科分类号
摘要
In the present note, we use the Riemann-Liouville fractional integrals to establish several new inequalities for some differentiable mappings that are connected with the celebrated Ostrowski type integral inequality. © 2014 Vietnam Academy of Science and Technology (VAST) and Springer Science+Business Media Singapore.
引用
收藏
页码:187 / 190
页数:3
相关论文
共 19 条
[1]  
Alomari M., Darus M., Some Ostrowski type inequalities for convex functions with applications, RGMIA, 13, (2010)
[2]  
Alomari M., Darus M., Dragomir S.S., Cerone P., Ostrowski type inequalities for functions whose derivatives are s-convex in the second sense, Appl. Math. Lett., 23, pp. 1071-1076, (2010)
[3]  
Belarbi S., Dahmani Z., On some new fractional integral inequalities, J. Inequal. Pure Appl. Math., 10, (2009)
[4]  
Dahmani Z., New inequalities in fractional integrals, Int. J. Nonlinear Sci., 9, pp. 493-497, (2010)
[5]  
Dahmani Z., On Minkowski and Hermite-Hadamard integral inequalities via fractional integration, Ann. Funct. Anal., 1, pp. 51-58, (2010)
[6]  
Dahmani Z., Tabharit L., Taf S., Some fractional integral inequalities, Nonlinear Sci. Lett. A, Math. Phys. Mech., 1, pp. 155-160, (2010)
[7]  
Dahmani Z., Tabharit L., Taf S., New generalizations of Grüss inequality using Riemann-Liouville fractional integrals, Bull. Math. Anal. Appl., 2, pp. 93-99, (2010)
[8]  
Dragomir S.S., The Ostrowski's integral inequality for Lipschitzian mappings and applications, Comput. Math. Appl., 38, pp. 33-37, (1999)
[9]  
Liu Z., Some companions of an Ostrowski type inequality and application, J. Inequal. Pure Appl. Math., 10, (2009)
[10]  
Ostrowski A.M., Über die absolutabweichung einer differentiebaren funktion von ihrem integralmitelwert, Comment. Math. Helv., 10, pp. 226-227, (1938)