Arithmetic properties of overpartition triples

被引:0
|
作者
Liu Quan Wang
机构
[1] National University of Singapore,Department of Mathematics
来源
Acta Mathematica Sinica, English Series | 2017年 / 33卷
关键词
Partitions; overpartition triples; congruences; theta functions; 05A17; 11P83;
D O I
暂无
中图分类号
学科分类号
摘要
Let p¯3(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline p _3}\left( n \right)$$\end{document} be the number of overpartition triples of n. By elementary series manipulations, we establish some congruences for p¯3(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline p _3}\left( n \right)$$\end{document} modulo small powers of 2, such as p¯3(16n+14)≡0(mod32),p¯3(8n+7)≡0(mod64)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline p _3}\left( {16n + 14} \right) \equiv 0\left( {\bmod 32} \right),{\overline p _3}\left( {8n + 7} \right) \equiv 0\left( {\bmod 64} \right)$$\end{document}. We also find many arithmetic properties for p¯3(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline p _3}\left( n \right)$$\end{document} modulo 7, 9 and 11, involving the following infinite families of Ramanujan-type congruences: for any integers α ≥ 1 and n ≥ 0, we p¯3(32α+1(3n+2))≡0(mod9·24),p¯3(42α−1(56n+49))≡0(mod7),p¯3(72α+1(7n+3))≡p¯3(72α+1(7n+5))≡p¯3(72α+1(7n+6))≡0(mod7)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bar p_3 \left( {3^{2\alpha + 1} \left( {3n + 2} \right)} \right) \equiv 0\left( {\bmod 9\cdot2^4 } \right),\bar p_3 \left( {4^{2\alpha - 1} \left( {56n + 49} \right)} \right) \equiv 0\left( {\bmod 7} \right),\bar p_3 \left( {7^{2\alpha + 1} \left( {7n + 3} \right)} \right) \equiv \bar p_3 \left( {7^{2\alpha + 1} \left( {7n + 5} \right)} \right) \equiv \bar p_3 \left( {7^{2\alpha + 1} \left( {7n + 6} \right)} \right) \equiv 0\left( {\bmod 7} \right)$$\end{document}, and for r ∈ {1, 2, 3, 4, 5, 6}, p¯3(11⋅74α−1(7n+r))≡0(mod11)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline p _3}\left( {11 \cdot {7^{4\alpha - 1}}\left( {7n + r} \right)} \right) \equiv 0\left( {\bmod 11} \right)$$\end{document}.
引用
收藏
页码:37 / 50
页数:13
相关论文
共 50 条
  • [1] Arithmetic Properties of Overpartition Triples
    Liu Quan WANG
    Acta Mathematica Sinica,English Series, 2017, (01) : 37 - 50
  • [2] Arithmetic properties of overpartition triples
    Wang, Liu Quan
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2017, 33 (01) : 37 - 50
  • [3] Arithmetic properties of l-regular overpartition pairs
    Naika, Megadahalli Siddanaika Mahadeva
    Shivashankar, Chandrappa
    TURKISH JOURNAL OF MATHEMATICS, 2017, 41 (03) : 756 - 774
  • [4] DIVISIBILITY AND ARITHMETIC PROPERTIES OF CERTAIN ℓ-REGULAR OVERPARTITION PAIRS
    Anand, Anusree
    Fathima, S. N.
    Sriraj, M. A.
    Reddy, P. Siva Kota
    JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2024, 42 (04): : 969 - 983
  • [5] Arithmetic properties of 2-color overpartition pairs
    Naika, M. S. Mahadeva
    Nayaka, S. Shivaprasada
    TBILISI MATHEMATICAL JOURNAL, 2020, 13 (02) : 67 - 85
  • [6] Arithmetic properties of partition triples with odd parts distinct
    Wang, Liuquan
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2015, 11 (06) : 1791 - 1805
  • [7] FURTHER ARITHMETIC PROPERTIES OF OVERCUBIC PARTITION TRIPLES
    Saikia, Manjil P.
    Sarma, Abhishek
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2025,
  • [8] Arithmetic properties for 7-regular partition triples
    Shane Chern
    Dazhao Tang
    Ernest X. W. Xia
    Indian Journal of Pure and Applied Mathematics, 2020, 51 : 717 - 733
  • [9] ARITHMETIC PROPERTIES FOR 7-REGULAR PARTITION TRIPLES
    Chern, Shane
    Tang, Dazhao
    Xia, Ernest X. W.
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2020, 51 (02) : 717 - 733
  • [10] Arithmetic identities and congruences for partition triples with 3-cores
    Wang, Liuquan
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2016, 12 (04) : 995 - 1010