Conformal representations of Leibniz algebras

被引:0
作者
P. S. Kolesnikov
机构
[1] Sobolev Institute of Mathematics,
来源
Siberian Mathematical Journal | 2008年 / 49卷
关键词
Leibniz algebra; dialgebra; conformal algebra;
D O I
暂无
中图分类号
学科分类号
摘要
We study the embedding construction of Lie dialgebras (Leibniz algebras) into conformal algebras. This construction leads to the concept of a conformal representation of Leibniz algebras. We prove that each (finite-dimensional) Leibniz algebra possesses a faithful linear representation (of finite type). As a corollary we give a new proof of the Poincaré-Birkhoff-Witt theorem for Leibniz algebras.
引用
收藏
页码:429 / 435
页数:6
相关论文
共 13 条
  • [1] Kolesnikov P. S.(2008)Varieties of dialgebras and conformal algebras Siberian Math. J. 49 257-272
  • [2] Belavin A. A.(1984)Infinite conformal symmetry in two-dimensional quantum field theory Nuclear Phys. 241 333-380
  • [3] Polyakov A. M.(1993)Universal enveloping algebras of Leibniz algebras and (co)homology Math. Ann. 296 139-158
  • [4] Zamolodchikov A. B.(2005)Steinberg-Leibniz algebras and superalgebras J. Algebra 283 199-221
  • [5] Loday J.-L.(2001)Theory of finite pseudoalgebras Adv. Math. 162 1-140
  • [6] Pirashvili T.(2006)Identities of conformal algebras and pseudoalgebras Comm. Algebra 34 1965-1979
  • [7] Liu D.(2003)Un théorème de Poincaré-Birkhoff-Witt pour les algèbres de Leibniz Comm. Algebra 31 527-544
  • [8] Bakalov B.(undefined)undefined undefined undefined undefined-undefined
  • [9] D’Andrea A.(undefined)undefined undefined undefined undefined-undefined
  • [10] Kac V. G.(undefined)undefined undefined undefined undefined-undefined