The Spectrality of a Class of Fractal Measures on Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{R}^{n}$$\end{document}

被引:0
作者
Jing Cheng Liu
Zhi Yong Wang
Yao Liu
Ya Shi
机构
[1] Hunan Normal University,Key Laboratory of Computing and Stochastic Mathematics (Ministry of Education), School of Mathematics and Statistics
[2] Hunan First Normal University,School of Mathematics and Statistics
关键词
Fractal spectral measure; orthogonal exponentials; Fourier transform; spectrum; 28A80; 42C05; 46C05;
D O I
10.1007/s10114-023-1247-2
中图分类号
学科分类号
摘要
Let M=ρ−1I∈Mn(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M=\rho^{-1}I\in M_{n}(\mathbb{R})$$\end{document} be an expanding matrix with 0 < ∣ ρ ∣ < 1 and D⊂Zn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D\subset\mathbb{Z}^{n}$$\end{document} be a finite digit set with 0 ∈ D and Z(mD)−Z(mD)⊂Z(mD)∪{0}⊂m−1Zn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cal{Z}(m_{D})-\cal{Z}(m_{D})\subset\cal{Z}(m_{D})\cup\{0\}\subset m^{-1}\mathbb{Z}^{n}$$\end{document} for a prime m, where Z(mD):={x:∑d∈De2πi⟨λ,x⟩=0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cal{Z}(m_{D}):=\{x : \sum\nolimits_{d\in D}e^{2\pi \mathrm{i}\langle\lambda,x\rangle}=0\}$$\end{document}. Let μM,D be the associated self-similar measure defined by μM,D(⋅)=1|D|∑d∈DμM,D(M(⋅)−d)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu_{M,D}(\cdot)={1\over{\vert D\vert}}\sum\nolimits_{d\in D}\mu_{M,D}(M(\cdot)-d)$$\end{document}. In this paper, the necessary and sufficient conditions for L2(μM,D) to admit infinite orthogonal exponential functions are given. Moreover, by using the order theory of polynomial, we estimate the number of orthogonal exponential functions for all cases that L2(μM,D) does not admit infinite orthogonal exponential functions.
引用
收藏
页码:952 / 966
页数:14
相关论文
共 52 条
[1]  
An L X(2014)A class of spectral Moran measures J. Funct. Anal. 266 343-354
[2]  
He X G(2015)Spectrality of the planar Sierpinski family J. Math. Anal. Appl. 432 725-732
[3]  
An L X(2019)The cardinality of orthogonal exponentials of planar self-affine measures with three-element digit sets J. Funct. Anal. 277 135-156
[4]  
He X G(2012)When does a Bernoulli convolution admit a spectrum? Adv. Math. 231 1681-1693
[5]  
Tao L(2021)Spectrality of self-affine Sierpinski-type measures on Appl. Comput. Harmon. Anal. 52 63-81
[6]  
Chen M L(2014)On spectral N-Bernoulli measures Adv. Math. 259 511-531
[7]  
Liu J C(2014)Spectrality of one dimensional self-similar measures with consecutive digits J. Math. Anal. Appl. 409 331-346
[8]  
Dai X R(2016)On the spectra of Sierpinski-type self-affine measures J. Funct. Anal. 270 4426-4442
[9]  
Dai X R(2015)Sierpinski-type spectral self-similar measures J. Funct. Anal. 269 1310-1326
[10]  
Fu X Y(2019)Hadamard triples generate self-affine spectral measures Trans. Amer. Math. Soc. 371 1439-1481