An arithmetic property of the set of angles between closed geodesics on hyperbolic surfaces of finite type

被引:0
作者
Sugata Mondal
机构
[1] Indiana University,
来源
Geometriae Dedicata | 2018年 / 195卷
关键词
Hyperbolic surfaces; Fuchsian groups; Geodesics; Angles; 53C22; 20H10;
D O I
暂无
中图分类号
学科分类号
摘要
For a hyperbolic surface S of finite type we consider the set A(S) of angles between closed geodesics on S. Our main result is that there are only finitely many rational multiples of π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document} in A(S).
引用
收藏
页码:241 / 247
页数:6
相关论文
共 11 条
  • [1] Ghosh A(2013)Nodal domains of Maas forms I Geom. Funct. Anal. 23 1515-1568
  • [2] Reznikov A(1959)Zur analytischen Theorie hyperbolischer Raumformen undBewegungsgruppen I, II, Nachtrag II Math. Ann. 138 1-26
  • [3] Sarnak P(1961)Zur analytischen Theorie hyperbolischer Raumformen undBewegungsgruppen I, II, Nachtrag II Math. Ann. 142 385-398
  • [4] Huber H(1961)Zur analytischen Theorie hyperbolischer Raumformen undBewegungsgruppen I, II, Nachtrag II Math. Ann. 143 463-464
  • [5] Huber H(2007)On the variation of a series on Teichmüller space Pac. J. Math. 231 461-479
  • [6] Huber H(1990)Le spectre marqué des longueurs des surfaces à courbure ngative. (French) [The marked spectrum of the lengths of surfaces with negative curvature] Ann. Math. (2) 131 151162-426
  • [7] McShane G(2006)Angular self-intersections for closed geodesics on surfaces Proc. AMS 134 419-351
  • [8] Otal J-P(1979)The length spectra as moduli for compact Riemann surfaces Ann. Math. (2) 109 323-undefined
  • [9] Pollicott M(undefined)undefined undefined undefined undefined-undefined
  • [10] Sharp R(undefined)undefined undefined undefined undefined-undefined