A new sufficient condition for a tree T to have the (2, 1)-total number Δ+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta +1$$\end{document}

被引:0
作者
Qiaojun Shu
Weifan Wang
Yiqiao Wang
机构
[1] Hangzhou Dianzhi University,School of Science
[2] Zhejiang Normal University,Department of Mathematics
[3] Beijing University of Chinese Medicine,School of Management
关键词
(2, 1)-total labelling; (2, 1)-total number ; Tree; Maximum degree;
D O I
10.1007/s10878-016-0021-0
中图分类号
学科分类号
摘要
A k-(2, 1)-total labelling of a graph G is a mapping f:V(G)∪E(G)→{0,1,…,k}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f: V(G)\cup E(G)\rightarrow \{0,1,\ldots ,k\}$$\end{document} such that adjacent vertices or adjacent edges receive distinct labels, and a vertex and its incident edges receive labels that differ in absolute value by at least 2. The (2, 1)-total number, denoted λ2t(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _2^t(G)$$\end{document}, is the minimum k such that G has a k-(2, 1)-total labelling. Let T be a tree with maximum degree Δ≥7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta \ge 7$$\end{document}. A vertex v∈V(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v\in V(T)$$\end{document} is called major if d(v)=Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d(v)=\Delta $$\end{document}, minor if d(v)<Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d(v)<\Delta $$\end{document}, and saturated if v is major and is adjacent to exactly Δ-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta - 2$$\end{document} major vertices. It is known that Δ+1≤λ2t(T)≤Δ+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta + 1 \le \lambda _2^t(T)\le \Delta + 2$$\end{document}. In this paper, we prove that if every major vertex is adjacent to at most Δ-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta -2$$\end{document} major vertices, and every minor vertex is adjacent to at most three saturated vertices, then λ2t(T)=Δ+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _2^t(T) = \Delta + 1$$\end{document}. The result is best possible with respect to these required conditions.
引用
收藏
页码:1011 / 1020
页数:9
相关论文
共 51 条
[1]  
Chang GJ(1996)The SIAM J Discret Math 9 309-316
[2]  
Kuo D(2007)(2, 1)-labelling problem on graphs Discret Appl Math 155 2585-2593
[3]  
Chen D(2015)(2, 1)-Total labelling of outerplanar graphs Discret Appl Math 187 61-69
[4]  
Wang W(1992)(2, 1)-Total labeling of trees with large maximum degree SIAM J Discret Math 5 586-595
[5]  
Chen D(2012)Labelling graphs with a condition at distance 2 Discret Math 312 1407-1420
[6]  
Shiu WC(2012)The J Discret Algorithms 14 189-206
[7]  
Shu Q(2008)-total labeling problem for trees Discret Math 308 496-513
[8]  
Sun PK(2009)A tight upper bound on the Inf Process Lett 109 199-203
[9]  
Wang W(2008)-total labeling number of outerplanar graphs SIAM J Discret Math 22 213-230
[10]  
Griggs JR(2007)-Total labelling of graphs Discret Math 307 119-207