Dynamics of planktonic food webs in three mining lakes across a pH gradient (pH 2–4)

被引:1
作者
Kathrin Wollmann
Rainer Deneke
Brigitte Nixdorf
Gabriele Packroff
机构
来源
Hydrobiologia | 2000年 / 433卷
关键词
geogenic acidic lakes; pH; food web; phytoplankton; zooplankton; corixids; seasonal variation;
D O I
暂无
中图分类号
学科分类号
摘要
Acidic mining lakes (ML) in Lusatia (Germany) are characterised by their geogenically determined chemistry. The present study describes the structure, main components and relationships within the food webs of three acidic mining lakes with different pH values (ML 111: pH 2.6; ML 117: pH 2.8; ML Felix: pH 3.6) in order to show their typical characteristics. The investigation covered the period 1995–1997. The number of species and the biomass are both low, but increase with increasing pH. Planktonic components in the most acidic ML 111 (pH 2.6–2.9) comprise bacteria, Ochromonas spp. and Chlamydomonas spp. and a few rotifers (E. worallii, C. hoodi). Heliozoans are the top-predators. In ML 117 (pH 2.8–3) Gymnodinium sp., ciliates, the rotifer B. sericus and the pioneer crustacean Chydorus sphaericus join the pelagial community. Heliozoans were not found in ML 117 or ML Felix (pH 3.4–3.8). ML Felix had the most taxa. The benthic food chain of all three lakes includes phytobenthic algae as producers, chironomids as primary consumers and corixids as top predators in the profundal. Corixids predate on small cladocerans inhabiting the pelagial in lakes with a pH above 2.8 such as ML Felix. They invade the pelagial and act as a connecting link between the benthic and the pelagic food chains, which are isolated in lakes with a lower pH. Occasionally primary producers and consumers were abundant in all three lakes. These organisms do not depend on the degree of acidity, but on the availability of essential ressources. Mass variations covered up any seasonal variation in the extremely acidic ML 111 (0.9 mm3 l−1), while in the other two lakes seasonal patterns of biomass were found.
引用
收藏
页码:3 / 14
页数:11
相关论文
共 64 条
[1]  
Almer B.(1974)Effects of acidification on Swedish lakes Ambio 3 30-36
[2]  
Dickson W.(1992)Vertical distributions of bacteria and algae in a steeply stratified humic lake under high grazing pressure from Hydrobiologia 229 253-269
[3]  
Ekström C.(1996)Heterotrophe Aktivität des Bakterioplanktons in einem sauren Gewässer Dt. Ges. f. Limnol. Erw. Zus. d. Jahrestagung 1995 in Berlin 2 918-922
[4]  
Hörnström E.(1989)Patterns of plankton species, pH and associated water chemistry in Nova Scotia lakes Wat. Air Soil Pollut. 46 343-358
[5]  
Miller U.(1989)The distribution of free swimming macroinvertebrates in acidic lakes of Maine: the role of fish predation Aquat. Fenn. 19 113-118
[6]  
Arvola L.(2000)Review of rotifers and crustaceans in highly acidic environments of pH values ?3 Hydrobiologia 433 167-172
[7]  
Salonen K.(1973)Eine Lichtfalle für den Insektenfang unter Wasser Entom. Abh.Mus. Tierk. 39 224-226
[8]  
Kankaala P.(1989)Response of limnetic insect populations of two acidic, fishless lakes to liming and Brook trout ( Can. J. Fish. aquat. Sci. 46 342-351
[9]  
Lehtovaara A.(1974)) Journal WPCF 46 554-574
[10]  
Bittl T.(1987)The kinetics of inorganic carbon limited algal growth Appl. environ. Microbiol. 53 2069-2076