Diabetic retinopathy detection using supervised and unsupervised deep learning: a review study

被引:2
|
作者
Naz, Huma [1 ]
Ahuja, Neelu Jyothi [1 ]
Nijhawan, Rahul [2 ]
机构
[1] Univ Petr & Energy Studies Dehradun, Sch Comp Sci, Dehra Dun, India
[2] Thapar Inst Engn & Technol, Patiala, Punjab, India
关键词
DR detection; Diabetic Retinopathy review; Unsupervised deep learning; Supervised learning; BLOOD-VESSEL SEGMENTATION; IMAGE-PROCESSING TECHNIQUES; FUNDUS IMAGES; RETINAL IMAGES; AUTOMATIC DETECTION; NEURAL-NETWORKS; CLASSIFICATION; SYSTEM; MICROANEURYSMS; EXTRACTION;
D O I
10.1007/s10462-024-10770-x
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The severe progression of Diabetes Mellitus (DM) stands out as one of the most significant concerns for healthcare officials worldwide. Diabetic Retinopathy (DR) is a common complication associated with diabetes, particularly affecting individuals between the ages of 18 and 65. As per the findings of the International Diabetes Federation (IDF) report, 35-60% of individuals suffering from DR possess a diabetes history. DR emerges as a leading cause of worldwide visual impairment. Due to the absence of ophthalmologists worldwide, insufficient health resources, and healthcare services, patients cannot get timely eye screening services. Automated computer-aided detection of DR provides a wide range of potential benefits. In contrast to traditional observer-driven techniques, automatic detection allows for a more objective analysis of numerous images in a shorter time. Moreover, Unsupervised Learning (UL) holds a high potential for image classification in healthcare, particularly regarding explainability and interpretability. Many studies on the detection of DR with both supervised and unsupervised Deep Learning (DL) methodologies are available. Surprisingly, none of the reviews presented thus far have highlighted the potential benefits of both supervised and unsupervised DL methods in Medical Imaging for the detection of DR. After a rigorous selection process, 103 articles were retrieved from four diverse and well-known databases (Web of Science, Scopus, ScienceDirect, and IEEE). This review provides a comprehensive summary of both supervised and unsupervised DL methods applied in DR detection, explaining the significant benefits of both techniques and covering aspects such as datasets, pre-processing, segmentation techniques, and supervised and unsupervised DL methods for detection. The insights from this review will aid academics and researchers in medical imaging to make informed decisions and choose the best practices for DR detection.
引用
收藏
页数:66
相关论文
共 50 条
  • [41] SUPERVISED AND UNSUPERVISED DEEP LEARNING APPLICATIONS FOR VISUAL SLAM: A REVIEW
    Ukaegbu, Uchechi Faithful
    Tartibu, Lagouge Kwanda
    Lim, C. W.
    PROCEEDINGS OF ASME 2022 INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, IMECE2022, VOL 3, 2022,
  • [42] Diabetic Retinopathy Detection from Fundus Images Using Machine Learning Techniques : A Review
    Kadan, Anoop Balakrishnan
    Subbian, Perumal Sankar
    WIRELESS PERSONAL COMMUNICATIONS, 2021, 121 (03) : 2199 - 2212
  • [43] Diabetic Retinopathy Classification Using Deep Learning
    Sathwik A.S.
    Agarwal R.
    Ajith Jubilson E.
    Basa S.S.
    EAI Endorsed Transactions on Pervasive Health and Technology, 2023, 9
  • [44] Computerised approaches for the detection of diabetic retinopathy using retinal fundus images: a survey
    Soomro, Toufique Ahmed
    Gao, Junbin
    Khan, Tariq
    Hani, Ahmad Fadzil M.
    Khan, Mohammad A. U.
    Paul, Manoranjan
    PATTERN ANALYSIS AND APPLICATIONS, 2017, 20 (04) : 927 - 961
  • [45] Early Detection of Diabetic Retinopathy Using PCA-Firefly Based Deep Learning Model
    Gadekallu, Thippa Reddy
    Khare, Neelu
    Bhattacharya, Sweta
    Singh, Saurabh
    Maddikunta, Praveen Kumar Reddy
    Ra, In-Ho
    Alazab, Mamoun
    ELECTRONICS, 2020, 9 (02)
  • [46] Deep Learning for the Detection and Classification of Diabetic Retinopathy with an Improved Activation Function
    Bhimavarapu, Usharani
    Battineni, Gopi
    HEALTHCARE, 2023, 11 (01)
  • [47] Multitasking Deep Learning Model for Detection of Five Stages of Diabetic Retinopathy
    Majumder, Sharmin
    Kehtarnavaz, Nasser
    IEEE ACCESS, 2021, 9 : 123220 - 123230
  • [48] On Deep Learning based algorithms for Detection of Diabetic Retinopathy
    Thanati, Haneesha
    Chalakkal, Renoh Johnson
    Abdulla, Waleed H.
    2019 INTERNATIONAL CONFERENCE ON ELECTRONICS, INFORMATION, AND COMMUNICATION (ICEIC), 2019, : 197 - 203
  • [49] An Enhanced Segmentation and Deep Learning Architecture for Early Diabetic Retinopathy Detection
    Maaliw, Renato R., III
    Mabunga, Zoren P.
    De Veluz, Maria Rossana D.
    Alon, Alvin S.
    Lagman, Ace C.
    Garcia, Manuel B.
    Lacatan, Luisito Lolong
    Dellosa, Rhowel M.
    2023 IEEE 13TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE, CCWC, 2023, : 168 - 175
  • [50] Geographic variation and ethnicity in diabetic retinopathy detection via deep learning
    Serener, Ali
    Serte, Sertan
    TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2020, 28 (02) : 664 - 678