Loop space and codimension one Anosov diffeomorphisms

被引:0
作者
Paternain M. [1 ]
机构
[1] Universidad de la República, Iguá 4225, Montevideo
关键词
Anosov diffeomorphism; loop space;
D O I
10.1007/s00574-015-0096-8
中图分类号
学科分类号
摘要
We show non contractibility of homoclinic loops of codimension one Anosov diffeomorphisms using dynamics in loop space. © 2015, Sociedade Brasileira de Matemática.
引用
收藏
页码:391 / 405
页数:14
相关论文
共 11 条
[1]  
Franks J., Anosov diffeomorphisms, Global Analysis (Proc. Sympos. Pure Math., Vol. XIV,Berkeley,Calif., 1968), Amer. Math. Soc., Providence, R. I., pp. 61-93, (1970)
[2]  
Ghys E., Holomorphic Anosov systems, Invent. Math., 119, 3, pp. 585-614, (1995)
[3]  
Gambini R., Trias A., Gauge dynamics in the C-representation, Nuclear Phys. B, 278, 2, pp. 436-448, (1986)
[4]  
Hiraide K., A simple proof of the Franks-Newhouse theorem on codimensionone Anosov diffeomorphisms, Ergodic Theory Dynam. Systems, 21, 3, pp. 801-806, (2001)
[5]  
Manning A., There are no new Anosov diffeomorphisms on tori, Amer. J. Math., 96, pp. 422-429, (1974)
[6]  
Newhouse S.E., On codimension one Anosov diffeomorphisms, Amer. J. Math., 92, pp. 761-770, (1970)
[7]  
Paternain M., The principal loop-bundle and dynamical systems, C. R. Acad. Sci. Paris Sér. I Math., 329, 12, pp. 1081-1085, (1999)
[8]  
Shub M., Endomorphisms of compact differentiable manifolds, Amer. J. Math., 91, pp. 175-199, (1969)
[9]  
Smale S., Differentiable dynamical systems, Bull. Amer. Math. Soc., 73, pp. 747-817, (1967)
[10]  
Spallanzani P., Groups of loops and hoops, Comm. Math. Phys., 216, 2, pp. 243-253, (2001)