A Highly Linear Calibration Metric for TES X-ray Microcalorimeters

被引:0
作者
C. G. Pappas
J. W. Fowler
D. A. Bennett
W. B. Doriese
Y. I. Joe
K. M. Morgan
G. C. O’Neil
J. N. Ullom
D. S. Swetz
机构
[1] NIST Boulder Laboratories,Quantum Sensors Group
来源
Journal of Low Temperature Physics | 2018年 / 193卷
关键词
Microcalorimeter; Transition-edge sensor (TES); Detector calibration; X-ray spectroscopy;
D O I
暂无
中图分类号
学科分类号
摘要
Transition-edge sensor X-ray microcalorimeters are usually calibrated empirically, as the most widely used calibration metric, optimal filtered pulse height (OFPH), in general has an unknown dependence on photon energy, Eγ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{\gamma }$$\end{document}. Because the calibration function can only be measured at specific points where photons of a known energy can be produced, this unknown dependence of OFPH on Eγ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{\gamma }$$\end{document} leads to calibration errors and the need for time-intensive calibration measurements and analysis. A calibration metric that is nearly linear as a function of Eγ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{\gamma }$$\end{document} could help alleviate these problems. In this work, we assess the linearity of a physically motivated calibration metric, EJoule\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{\mathrm {Joule}}$$\end{document}. We measure calibration pulses in the range 4.5 keV <Eγ<\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<E_{\gamma }<$$\end{document} 9.6 keV with detectors optimized for 6 keV photons to compare the linearity properties of EJoule\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{\mathrm {Joule}}$$\end{document} to OFPH. In these test data sets, we find that EJoule\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{\mathrm {Joule}}$$\end{document} fits a linear function an order of magnitude better than OFPH. Furthermore, calibration functions using EJ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{\mathrm {J}}$$\end{document}, an optimized version of EJoule\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{\mathrm {Joule}}$$\end{document}, are linear within the 2–3 eV noise of the data.
引用
收藏
页码:249 / 257
页数:8
相关论文
共 393 条
  • [1] Ullom JN(2015)undefined Supercond. Sci. Technol. 28 084003-819
  • [2] Bennett DA(2017)undefined Rev. Sci. Instrum. 88 053108-undefined
  • [3] Doriese WB(2016)undefined Phys. Rev. Applied 6 024002-undefined
  • [4] Abbamonte P(2016)undefined Phys. Rev. X 6 031047-undefined
  • [5] Alpert BK(2017)undefined J. Phys. Chem. Lett. 8 1099-undefined
  • [6] Bennett DA(2011)undefined IEEE Trans. Appl. Supercond. 21 207-undefined
  • [7] Denison EV(2017)undefined IEEE Trans. Appl. Supercond. 27 2100905-undefined
  • [8] Fang Y(2017)undefined JINST 12 C02046-undefined
  • [9] Fischer DA(2014)undefined SPIE Astronom. Telesc. + Instrum. 9144 91442L-undefined
  • [10] Fitzgerald CP(2016)undefined SPIE Astronom. Telesc. + Instrum. 9905 99052H-undefined