A Hilbert-type integral inequality in the whole plane related to the kernel of exponent function

被引:0
作者
Yanru Zhong
Meifa Huang
Bicheng Yang
机构
[1] Guilin University of Electronic Technology,School of Computer Science and Information Security
[2] Guilin University of Electronic Technology,School of Mechanical Science and Electrical Engineering
[3] Guangdong University of Education,Department of Mathematics
来源
Journal of Inequalities and Applications | / 2018卷
关键词
Hilbert-type integral inequality; Weight function; Intermediate variable; Equivalent statement; Operator; Gamma function; 26D15; 31A10;
D O I
暂无
中图分类号
学科分类号
摘要
By using real analysis and weight functions, we obtain a few equivalent statements of a Hilbert-type integral inequality in the whole plane related to the kernel of exponent function with intermediate variables. The constant factor related to the gamma function is proved to be the best possible. We also consider some particular cases and the operator expressions.
引用
收藏
相关论文
共 39 条
[1]  
Yang B.C.(2006)On the norm of an integral operator and applications J. Math. Anal. Appl. 321 182-192
[2]  
Xu J.S.(2007)Hardy–Hilbert’s inequalities with two parameters Adv. Math. 36 189-198
[3]  
Yang B.C.(2007)On the norm of a Hilbert’s type linear operator and applications J. Math. Anal. Appl. 325 529-541
[4]  
Xin D.M.(2010)A Hilbert-type integral inequality with the homogeneous kernel of zero degree Math. Theory Appl. 30 70-74
[5]  
Yang B.C.(2010)A Hilbert-type integral inequality with the homogenous kernel of degree 0 J. Shandong Univ. Nat. Sci. 45 103-106
[6]  
Debnath L.(2012)Recent developments of Hilbert-type discrete and integral inequalities with applications Int. J. Math. Math. Sci. 2012 849-859
[7]  
Yang B.C.(2007)A new Hilbert-type integral inequality Soochow J. Math. 33 105-211
[8]  
Yang B.C.(2010)On a Hilbert-type integral inequality with the homogeneous kernel of 0-degree and the hypergeometric function Math. Pract. Theory 40 1085-1090
[9]  
He B.(2008)A new Hilbert-type integral inequality with some parameters J. Jilin Univ. Sci. Ed. 46 75-88
[10]  
Yang B.C.(2011)A new Hilbert-type integral inequality in whole plane with the non-homogeneous kernel J. Inequal. Appl. 2011 391-401