Chiral observables and S-duality in N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2⋆ U(N ) gauge theories

被引:0
作者
S. K. Ashok
M. Billò
E. Dell’Aquila
M. Frau
A. Lerda
M. Moskovic
M. Raman
机构
[1] Institute of Mathematical Sciences,
[2] Università di Torino,undefined
[3] Dipartimento di Fisica and I.N.F.N. - sezione di Torino,undefined
[4] Università del Piemonte Orientale,undefined
[5] Dipartimento di Scienze e Innovazione Tecnologica,undefined
[6] and I.N.F.N. - sezione di Torino,undefined
关键词
Extended Supersymmetry; Supersymmetric gauge theory; Supersymmetry and Duality; Solitons Monopoles and Instantons;
D O I
10.1007/JHEP11(2016)020
中图分类号
学科分类号
摘要
We study N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2⋆ theories with gauge group U(N ) and use equivariant localization to calculate the quantum expectation values of the simplest chiral ring elements. These are expressed as an expansion in the mass of the adjoint hypermultiplet, with coefficients given by quasi-modular forms of the S-duality group. Under the action of this group, we construct combinations of chiral ring elements that transform as modular forms of definite weight. As an independent check, we confirm these results by comparing the spectral curves of the associated Hitchin system and the elliptic Calogero-Moser system. We also propose an exact and compact expression for the 1-instanton contribution to the expectation value of the chiral ring elements.
引用
收藏
相关论文
共 151 条
  • [1] Seiberg N(1994) = 2 Nucl. Phys. B 431 484-undefined
  • [2] Witten E(2003)Seiberg-Witten prepotential from instanton counting Adv. Theor. Math. Phys. 7 831-undefined
  • [3] Nekrasov NA(2003)An algorithm for the microscopic evaluation of the coefficients of the Seiberg-Witten prepotential Int. J. Mod. Phys. A 18 2541-undefined
  • [4] Flume R(2006)Seiberg-Witten theory and random partitions Prog. Math. 244 525-undefined
  • [5] Poghossian R(2003)Multiinstanton calculus and equivariant cohomology JHEP 05 054-undefined
  • [6] Nekrasov N(2004)Matone’s relation in the presence of gravitational couplings JHEP 04 008-undefined
  • [7] Okounkov A(2010)Liouville Correlation Functions from Four-dimensional Gauge Theories Lett. Math. Phys. 91 167-undefined
  • [8] Bruzzo U(2010) = 2 JHEP 01 113-undefined
  • [9] Fucito F(2011)Non-Perturbative Topological Strings And Conformal Blocks JHEP 09 022-undefined
  • [10] Morales JF(2010)Deformed Topological Partition Function and Nekrasov Backgrounds Nucl. Phys. B 838 253-undefined