共 44 条
- [41] Prime powers dividing products of consecutive integer values of x2n+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x^{2^n}+1$$\end{document} Research in Number Theory, 2020, 6 (1)
- [42] A New Family of q-Supercongruences from Jackson’s 6ϕ5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi _5$$\end{document} SummationA New Family of q-SupercongruencesV. J. W. Guo Results in Mathematics, 2025, 80 (2)
- [43] Congruences modulo 4 and 8 for Ramanujan’s sixth-order mock theta function ρ(q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho (q)$$\end{document}Congruences modulo 4 and 8 for Ramanujan’s sixth-order...Y. Hu etal. The Ramanujan Journal, 2025, 66 (4)
- [44] Congruences involving gn(x)=∑k=0nnk22kkxk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_n(x)=\sum \limits _{k=0}^n\left( {\begin{array}{c}n\\ k\end{array}}\right) ^2\left( {\begin{array}{c}2k\\ k\end{array}}\right) x^k$$\end{document} The Ramanujan Journal, 2016, 40 (3) : 511 - 533