Proof complexity of propositional default logic

被引:0
作者
Olaf Beyersdorff
Arne Meier
Sebastian Müller
Michael Thomas
Heribert Vollmer
机构
[1] Leibniz University Hanover,Institute of Theoretical Computer Science
[2] Charles University Prague,Faculty of Mathematics and Physics
来源
Archive for Mathematical Logic | 2011年 / 50卷
关键词
Default logic; Sequent calculus; Proof complexity; 03F20; 03B60;
D O I
暂无
中图分类号
学科分类号
摘要
Default logic is one of the most popular and successful formalisms for non-monotonic reasoning. In 2002, Bonatti and Olivetti introduced several sequent calculi for credulous and skeptical reasoning in propositional default logic. In this paper we examine these calculi from a proof-complexity perspective. In particular, we show that the calculus for credulous reasoning obeys almost the same bounds on the proof size as Gentzen’s system LK. Hence proving lower bounds for credulous reasoning will be as hard as proving lower bounds for LK. On the other hand, we show an exponential lower bound to the proof size in Bonatti and Olivetti’s enhanced calculus for skeptical default reasoning.
引用
收藏
页码:727 / 742
页数:15
相关论文
共 27 条
[1]  
Amati G.(1996)A proof theoretical approach to default reasoning I: tableaux for default logic J. Log. Comput. 6 205-231
[2]  
Aiello L.C.(1999)A tutorial on default logics ACM Comput. Surv. 31 337-359
[3]  
Gabbay D.M.(2002)Sequent calculi for propositional nonmonotonic logics ACM Trans. Comput. Log. 3 226-278
[4]  
Pirri F.(2000)On interpolation and automatization for Frege systems SIAM J. Comput. 29 1939-1967
[5]  
Antoniou G.(1993)A survey of complexity results for nonmonotonic logics J. Log. Program. 17 127-160
[6]  
Bonatti P.A.(1979)The relative efficiency of propositional proof systems J. Symb. Log. 44 36-50
[7]  
Olivetti N.(2001)Proof-complexity results for nonmonotonic reasoning ACM Trans. Comput. Log. 2 340-387
[8]  
Bonet M.L.(1935)Untersuchungen über das logische Schließen Mathematische Zeitschrift 39 68-131
[9]  
Pitassi T.(1992)Complexity results for nonmonotonic logics J. Log. Comput. 2 397-425
[10]  
Raz R.(2009)On lengths of proofs in non-classical logics Ann. Pure Appl. Log. 157 194-205