Hypergroups and Quantum Bessel Processes of Non-integer Dimensions

被引:0
作者
Wojciech Matysiak
机构
[1] Politechnika Warszawska,Wydział Matematyki i Nauk Informacyjnych
来源
Journal of Theoretical Probability | 2017年 / 30卷
关键词
Quantum Bessel process; Bessel process; Hypergroup; Gelfand pair; Primary 60J25; Secondary 43A62;
D O I
暂无
中图分类号
学科分类号
摘要
It is demonstrated how to use a certain family of commutative hypergroups to provide a universal construction of Biane’s quantum Bessel processes of all dimensions not smaller than 1. The classical Bessel processes BES(δ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {BES}(\delta )$$\end{document} are analogously constructed with the aid of the Bessel–Kingman hypergroups for all, not necessarily integer, dimensions δ≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta \ge 1$$\end{document}.
引用
收藏
页码:1677 / 1691
页数:14
相关论文
共 17 条
[1]  
Bryc W(2007)Quadratic harnesses, Trans. Am. Math. Soc. 359 5449-5483
[2]  
Matysiak W(2008)-commutations, and orthogonal martingale polynomials Ann. Probab. 36 623-646
[3]  
Wesołowski J(2006)The bi-Poisson process: a quadratic harness Stat. Probab. Lett. 76 1664-1674
[4]  
Bryc W(1963)The classical bi-Poisson process: an invertible quadratic harness Acta Math. 109 11-53
[5]  
Matysiak W(1977)Random walks with spherical symmetry SIAM J. Math. Anal. 8 535-540
[6]  
Wesołowski J(2015)The addition formula for Laguerre polynomials Stoch. Process. Appl. 125 3430-3457
[7]  
Bryc W(1999)Zonal polynomials and a multidimensional quantum Bessel process Infin. Dimens. Anal. Quantum Probab. Relat. Top. 2 79-104
[8]  
Wesołowski J(2007)Lévy–Khintchine representation on local Sturm–Liouville hypergroups Compos. Math. 143 749-779
[9]  
Kingman JFC(1988)Bessel convolutions on matrix cones Studia Math. 88 245-256
[10]  
Koornwinder T(2009)An algebra associated with the generalized sub-Laplacian J. Theor. Probab. 22 741-771