Many examples of non-cocompact Fuchsian groups sitting in PSL2(Q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {PSL}_2({\mathbb {Q}})$$\end{document}

被引:0
作者
Mark Norfleet
机构
[1] University of Nevada,Department of Mathematics and Statistics
关键词
Isometries of the hyperbolic plane; Non-arithmetic Fuchsian groups; Hyperbolic fixed points; Minkowski space; 20H10; 57M60;
D O I
10.1007/s10711-015-0079-3
中图分类号
学科分类号
摘要
We will explicitly construct many non-arithmetic Fuchsian groups while controlling some geometric properties of the action on the boundary of the hyperbolic plane. With this construction, we produce infinitely many noncommensurable non-cocompact Fuchsian groups of finite covolume sitting in PSL2(Q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {PSL}_2({\mathbb {Q}})$$\end{document} so that the set of hyperbolic fixed points of each group will contain a given finite collection of elements in the boundary of the hyperbolic plane.
引用
收藏
页码:255 / 263
页数:8
相关论文
共 3 条
[1]  
Long DD(2002)Pseudomodular surfaces J. Reine Angew. Math. 552 77-100
[2]  
Reid AW(1971)Rings of definition of dense subgroups of semisimple linear groups Izv. Akad. Nauk SSSR Ser. Mat. 35 45-55
[3]  
Vinberg ÈB(undefined)undefined undefined undefined undefined-undefined