We perform a comprehensive study of the impact of new-physics operators with different Lorentz structures on CP-violating observables involving the b → sμ+μ− transition. We examine the effects of new vector-axial vector (VA), scalar-pseudoscalar (SP) and tensor (T) interactions on the CP asymmetries in the branching ratios and forward-backward asymmetries of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$ \overline B_s^0 \to {\mu^{+} }{\mu^{-} } $\end{document}, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$ \overline B_d^0 \to {X_{\text{s}}}{\mu^{+} }{\mu^{-} } $\end{document}, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$ \overline B_s^0 \to {\mu^{+} }{\mu^{-} }\gamma $\end{document}, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$ \overline B_d^0 \to \overline K {\mu^{+} }{\mu^{-} } $\end{document}, and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$ \overline B_d^0 \to {\overline K^* }{\mu^{+} }{\mu^{-} } $\end{document}. In \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$ \overline B_d^0 \to {\overline K^* }{\mu^{+} }{\mu^{-} } $\end{document}, we also explore the direct CP asymmetries in the longitudinal polarization fraction fL and the angular asymmetries \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$ A_T^{(2)} $\end{document} and ALT , as well as the triple-product CP asymmetries \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$ A_T^{\left( {im} \right)} $\end{document} and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$ A_{LT}^{\left( {im} \right)} $\end{document}. We find that, in almost all cases, the CP-violating observables are sensitive only to new physics which involves VA operators. The VA new physics may therefore be unambiguously identified by a combined analysis of future measurements of these CP-violating observables.