On Fractional Brownian Processes

被引:0
作者
Denis Feyel
Arnaud de la Pradelle
机构
[1] Université d'Evry-Val d'Essonne,Départment de Mathématiques
[2] Université Paris VI,Laboratoire d'Analyse Fonctionnelle
[3] Tour 46-0,undefined
来源
Potential Analysis | 1999年 / 10卷
关键词
Liouville spaces; fractional integrals; Kolmogorov lemma; fractional Brownian motion; fractional Wiener integrals;
D O I
暂无
中图分类号
学科分类号
摘要
We use Liouville spaces in order to prove the existence of some different fractional α-Brownian motion ( 0 < α ≤ 1 ), or fractional ( α, β )-Brownian sheets. There are also applications to the Wiener stochastic integral with respect to these α-Brownian.
引用
收藏
页码:273 / 288
页数:15
相关论文
共 50 条
  • [41] Approximations of fractional Brownian motion
    Li, Yuqiang
    Dai, Hongshuai
    BERNOULLI, 2011, 17 (04) : 1195 - 1216
  • [42] Deconvolution of fractional Brownian motion
    Pipiras, V
    Taqqu, MS
    JOURNAL OF TIME SERIES ANALYSIS, 2002, 23 (04) : 487 - 501
  • [43] On the prediction of fractional Brownian motion
    Gripenberg, G
    Norros, I
    JOURNAL OF APPLIED PROBABILITY, 1996, 33 (02) : 400 - 410
  • [44] On Fractional Brownian Motion and Wavelets
    S. Albeverio
    P. E. T. Jorgensen
    A. M. Paolucci
    Complex Analysis and Operator Theory, 2012, 6 : 33 - 63
  • [45] Piecewise fractional Brownian motion
    Perrin, E
    Harba, R
    Iribarren, I
    Jennane, R
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2005, 53 (03) : 1211 - 1215
  • [46] On Fractional Brownian Motion and Wavelets
    Albeverio, S.
    Jorgensen, P. E. T.
    Paolucci, A. M.
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2012, 6 (01) : 33 - 63
  • [47] Dimensions of Fractional Brownian Images
    Burrell, Stuart A.
    JOURNAL OF THEORETICAL PROBABILITY, 2022, 35 (04) : 2217 - 2238
  • [48] Arbitrage with fractional Brownian motion
    Rogers, LCG
    MATHEMATICAL FINANCE, 1997, 7 (01) : 95 - 105
  • [49] FRACTIONAL BROWNIAN VECTOR FIELDS
    Tafti, Pouya Dehghani
    Unser, Michael
    MULTISCALE MODELING & SIMULATION, 2010, 8 (05) : 1645 - 1670
  • [50] Fractal (fractional) Brownian motion
    Chow, Winston C.
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2011, 3 (02): : 149 - 162