On Fractional Brownian Processes

被引:0
作者
Denis Feyel
Arnaud de la Pradelle
机构
[1] Université d'Evry-Val d'Essonne,Départment de Mathématiques
[2] Université Paris VI,Laboratoire d'Analyse Fonctionnelle
[3] Tour 46-0,undefined
来源
Potential Analysis | 1999年 / 10卷
关键词
Liouville spaces; fractional integrals; Kolmogorov lemma; fractional Brownian motion; fractional Wiener integrals;
D O I
暂无
中图分类号
学科分类号
摘要
We use Liouville spaces in order to prove the existence of some different fractional α-Brownian motion ( 0 < α ≤ 1 ), or fractional ( α, β )-Brownian sheets. There are also applications to the Wiener stochastic integral with respect to these α-Brownian.
引用
收藏
页码:273 / 288
页数:15
相关论文
共 50 条
  • [31] Approximating a geometric fractional Brownian motion and related processes via discrete Wick calculus
    Bender, Christian
    Parczewski, Peter
    BERNOULLI, 2010, 16 (02) : 389 - 417
  • [32] Fractional Brownian motion as a weak limit of Poisson shot noise processes -: with applications to finance
    Klüuppelberg, C
    Kühn, C
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2004, 113 (02) : 333 - 351
  • [33] Eigenvalue distributions of high-dimensional matrix processes driven by fractional Brownian motion
    Song, Jian
    Yao, Jianfeng
    Yuan, Wangjun
    RANDOM MATRICES-THEORY AND APPLICATIONS, 2024, 13 (02)
  • [34] Weak convergence to fractional Brownian motion in Brownian scenery
    Wensheng Wang
    Probability Theory and Related Fields, 2003, 126 : 203 - 220
  • [35] Random rewards, fractional Brownian local times and stable self-similar processes
    Cohen, Serge
    Samorodnitsky, Gennady
    ANNALS OF APPLIED PROBABILITY, 2006, 16 (03) : 1432 - 1461
  • [36] Donsker-type theorems for correlated geometric fractional Brownian motions and related processes
    Parczewski, Peter
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2017, 22
  • [37] Parameter Estimation for Gaussian Processes with Application to the Model with Two Independent Fractional Brownian Motions
    Mishura, Yuliya
    Ralchenko, Kostiantyn
    Shklyar, Sergiy
    STOCHASTIC PROCESSES AND APPLICATIONS (SPAS2017), 2018, 271 : 123 - 146
  • [38] Are Fractional Brownian Motions Predictable?
    Jakubowski, Adam
    SEMINAR ON STOCHASTIC ANALYSIS, RANDOM FIELDS AND APPLICATIONS VI, 2011, 63 : 159 - 165
  • [39] Horizons of fractional Brownian surfaces
    Falconer, KJ
    Véhel, JL
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2000, 456 (2001): : 2153 - 2178
  • [40] Dimensions of Fractional Brownian Images
    Stuart A. Burrell
    Journal of Theoretical Probability, 2022, 35 : 2217 - 2238