Sufficient Spectral Radius Conditions for Hamilton-Connectivity of k-Connected Graphs

被引:0
作者
Qiannan Zhou
Hajo Broersma
Ligong Wang
Yong Lu
机构
[1] Northwestern Polytechnical University,Department of Applied Mathematics
[2] University of Twente,Faculty of EEMCS
[3] Jiangsu Normal University,School of Mathematics and Statistics
来源
Graphs and Combinatorics | 2021年 / 37卷
关键词
-connected graph; Hamilton-connected graph; Spectral radius; 05C50; 05C45; 05C40;
D O I
暂无
中图分类号
学科分类号
摘要
We present two new sufficient conditions in terms of the spectral radius ρ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho (G)$$\end{document} guaranteeing that a k-connected graph G is Hamilton-connected, unless G belongs to a collection of exceptional graphs. We use the Bondy–Chvátal closure to characterize these exceptional graphs.
引用
收藏
页码:2467 / 2485
页数:18
相关论文
共 37 条
[1]  
Benediktovich V(2016)Sufficient spectral condition for hamiltonicity of a graph Linear Algebra Appl. 494 70-79
[2]  
Bondy JA(1976)A method in graph theory Discrete Math. 15 111-135
[3]  
Chvátal V(2018)Sufficient conditions for hamiltonian graphs in terms of (signless Laplacian) spectral radius Linear Multilinear Algebra 66 919-936
[4]  
Chen XD(1972)On hamilton’s ideals J. Comb. Theory B 12 163-168
[5]  
Hou YP(2009)On a conjecture of V. Nikiforov Discrete Math. 309 4522-4526
[6]  
Qian JG(2010)Spectral radius and hamiltonicity of graphs Linear Algebra Appl. 432 2170-2173
[7]  
Chvátal V(2003)Advances on the hamiltonian problem—a survey Graphs Combin. 19 7-52
[8]  
Csikvari P(2014)Recent advances on the hamiltonian problem—survey III Graphs Combin. 30 1-46
[9]  
Fiedler M(2001)A sharp upper bound of the spectral radius of graphs J. Comb. Theory B 81 177-183
[10]  
Nikiforov V(1981)On graphs with randomly deleted edges Acta Math. Acad. Sci. Hung. 37 77-88