Inequalities of the Hermite–Hadamard Type Involving Numerical Differentiation Formulas

被引:0
|
作者
Andrzej Olbryś
Tomasz Szostok
机构
[1] Institute of Mathematics,
来源
Results in Mathematics | 2015年 / 67卷
关键词
Hermite–Hadamard inequality; differentiation formulas; convex functions; 26A51; 26D10; 39B62;
D O I
暂无
中图分类号
学科分类号
摘要
We observe that the Hermite–Hadamard inequality written in the form fx+y2≤F(y)-F(x)y-x≤f(x)+f(y)2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\left(\frac{x+y}{2}\right)\leq\frac{F(y)-F(x)}{y-x}\leq\frac{f(x)+f(y)}{2}$$\end{document}may be viewed as an inequality between two quadrature operators fx+y2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f\left(\frac{x+y}{2}\right)}$$\end{document}f(x)+f(y)2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\frac{f(x)+f(y)}{2}}$$\end{document} and a differentiation formula F(y)-F(x)y-x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\frac{F(y)-F(x)}{y-x}}$$\end{document}. We extend this inequality, replacing the middle term by more complicated ones. As it turns out in some cases it suffices to use Ohlin lemma as it was done in a recent paper (Rajba, Math Inequal Appl 17(2):557–571, 2014) however to get more interesting result some more general tool must be used. To this end we use Levin–Stečkin theorem which provides necessary and sufficient conditions under which inequalities of the type we consider are satisfied.
引用
收藏
页码:403 / 416
页数:13
相关论文
共 50 条
  • [41] New discrete inequalities of Hermite-Hadamard type for convex functions
    Mohammed, Pshtiwan Othman
    Abdeljawad, Thabet
    Alqudah, Manar A.
    Jarad, Fahd
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [42] On Hermite-Hadamard Type Inequalities Via Fractional Integral Operators
    Tunc, Tuba
    Sarikaya, Mehmet Zeki
    FILOMAT, 2019, 33 (03) : 837 - 854
  • [43] INEQUALITIES OF HERMITE-HADAMARD TYPE FOR FUNCTIONS OF SELFADJOINT OPERATORS AND MATRICES
    Dragomir, Silvestru Sever
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2017, 11 (01): : 241 - 259
  • [44] On the new Hermite–Hadamard type inequalities for s-convex functions
    Hasan Barsam
    Sayyed Mehrab Ramezani
    Yamin Sayyari
    Afrika Matematika, 2021, 32 : 1355 - 1367
  • [45] Hermite-Hadamard Type Inequalities and Convex Functions in Signal Processing
    Sun, Wenfeng
    He, Xiaowei
    IEEE ACCESS, 2024, 12 : 92906 - 92918
  • [46] ON HERMITE-HADAMARD TYPE INEQUALITIES VIA KATUGAMPOLA FRACTIONAL INTEGRALS
    Yaldiz, H.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2019, 9 (04): : 773 - 785
  • [47] Inequalities of Hermite-Hadamard type for AH-convex functions
    Dragomir, Sever S.
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2016, 61 (04): : 489 - 502
  • [48] Inequalities of Hermite-Hadamard type for HH-convex functions
    Dragomir, S. S.
    ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA, 2018, 22 (02): : 179 - 190
  • [49] Some fractional integral inequalities of type Hermite–Hadamard through convexity
    Shahid Qaisar
    Jamshed Nasir
    Saad Ihsan Butt
    Asma Asma
    Farooq Ahmad
    Muhammad Iqbal
    Sajjad Hussain
    Journal of Inequalities and Applications, 2019
  • [50] Ohlin's lemma and some inequalities of the Hermite-Hadamard type
    Szostok, Tomasz
    AEQUATIONES MATHEMATICAE, 2015, 89 (03) : 915 - 926