Inequalities of the Hermite–Hadamard Type Involving Numerical Differentiation Formulas

被引:0
|
作者
Andrzej Olbryś
Tomasz Szostok
机构
[1] Institute of Mathematics,
来源
Results in Mathematics | 2015年 / 67卷
关键词
Hermite–Hadamard inequality; differentiation formulas; convex functions; 26A51; 26D10; 39B62;
D O I
暂无
中图分类号
学科分类号
摘要
We observe that the Hermite–Hadamard inequality written in the form fx+y2≤F(y)-F(x)y-x≤f(x)+f(y)2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\left(\frac{x+y}{2}\right)\leq\frac{F(y)-F(x)}{y-x}\leq\frac{f(x)+f(y)}{2}$$\end{document}may be viewed as an inequality between two quadrature operators fx+y2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f\left(\frac{x+y}{2}\right)}$$\end{document}f(x)+f(y)2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\frac{f(x)+f(y)}{2}}$$\end{document} and a differentiation formula F(y)-F(x)y-x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\frac{F(y)-F(x)}{y-x}}$$\end{document}. We extend this inequality, replacing the middle term by more complicated ones. As it turns out in some cases it suffices to use Ohlin lemma as it was done in a recent paper (Rajba, Math Inequal Appl 17(2):557–571, 2014) however to get more interesting result some more general tool must be used. To this end we use Levin–Stečkin theorem which provides necessary and sufficient conditions under which inequalities of the type we consider are satisfied.
引用
收藏
页码:403 / 416
页数:13
相关论文
共 50 条
  • [31] Ohlin’s lemma and some inequalities of the Hermite–Hadamard type
    Tomasz Szostok
    Aequationes mathematicae, 2015, 89 : 915 - 926
  • [32] Fractional Hermite-Hadamard Type Inequalities for Subadditive Functions
    Ali, Muhammad Aamir
    Sarikaya, Mehmet Zeki
    Budak, Huseyin
    FILOMAT, 2022, 36 (11) : 3715 - 3729
  • [33] ON THE OHLIN LEMMA FOR HERMITE-HADAMARD-FEJER TYPE INEQUALITIES
    Rajba, Teresa
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2014, 17 (02): : 557 - 571
  • [34] On the Hermite-Hadamard Inequality and Other Integral Inequalities Involving Several Functions
    Sroysang, Banyat
    JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2013,
  • [35] New Generalized Hermite-Hadamard Inequality and Related Integral Inequalities Involving Katugampola Type Fractional Integrals
    Almutairi, Ohud
    Kilicman, Adem
    SYMMETRY-BASEL, 2020, 12 (04):
  • [36] Hermite–Hadamard and Hermite–Hadamard–Fejer type inequalities for p-convex functions via conformable fractional integrals
    Naila Mehreen
    Matloob Anwar
    Journal of Inequalities and Applications, 2020
  • [37] Hermite-Hadamard type and Fejer type inequalities for general weights (I)
    Hwang, Shiow-Ru
    Tseng, Kuei-Lin
    Hsu, Kai-Chen
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [38] Hermite-Hadamard type inequalities for the product of (α, m)-convex functions
    Yin, Hong-Ping
    Qi, Feng
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2015, 8 (03): : 231 - 236
  • [39] Generalized Hermite-Hadamard-Mercer Type Inequalities via Majorization
    Faisal, Shah
    Khan, Muhammad Adil
    Iqbal, Sajid
    FILOMAT, 2022, 36 (02) : 469 - 483
  • [40] Weighted Hermite-Hadamard and Simpson Type Inequalities for Double Integrals
    Budak, H.
    Ertugral, F.
    Sarikaya, M. Zeki
    JOURNAL OF MATHEMATICAL EXTENSION, 2021, 15 (01) : 149 - 177