Inequalities of the Hermite–Hadamard Type Involving Numerical Differentiation Formulas

被引:0
|
作者
Andrzej Olbryś
Tomasz Szostok
机构
[1] Institute of Mathematics,
来源
Results in Mathematics | 2015年 / 67卷
关键词
Hermite–Hadamard inequality; differentiation formulas; convex functions; 26A51; 26D10; 39B62;
D O I
暂无
中图分类号
学科分类号
摘要
We observe that the Hermite–Hadamard inequality written in the form fx+y2≤F(y)-F(x)y-x≤f(x)+f(y)2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\left(\frac{x+y}{2}\right)\leq\frac{F(y)-F(x)}{y-x}\leq\frac{f(x)+f(y)}{2}$$\end{document}may be viewed as an inequality between two quadrature operators fx+y2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f\left(\frac{x+y}{2}\right)}$$\end{document}f(x)+f(y)2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\frac{f(x)+f(y)}{2}}$$\end{document} and a differentiation formula F(y)-F(x)y-x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\frac{F(y)-F(x)}{y-x}}$$\end{document}. We extend this inequality, replacing the middle term by more complicated ones. As it turns out in some cases it suffices to use Ohlin lemma as it was done in a recent paper (Rajba, Math Inequal Appl 17(2):557–571, 2014) however to get more interesting result some more general tool must be used. To this end we use Levin–Stečkin theorem which provides necessary and sufficient conditions under which inequalities of the type we consider are satisfied.
引用
收藏
页码:403 / 416
页数:13
相关论文
共 50 条
  • [21] HERMITE-HADAMARD-TYPE INEQUALITIES IN THE APPROXIMATE INTEGRATION
    Wasowicz, Szymon
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2008, 11 (04): : 693 - 700
  • [22] Hermite-Hadamard and Ostrowski Type Inequalities on Hemispheres
    Barani, A.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (06) : 4253 - 4263
  • [23] GENERALIZATIONS OF SOME HERMITE-HADAMARD-TYPE INEQUALITIES
    Fok, Houkei
    Vong, Seakweng
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2015, 46 (03): : 359 - 370
  • [24] Hermite-Hadamard-type inequalities for conformable integrals
    Bohner, Martin
    Kashuri, Artion
    Mohammed, Pshtiwan Othman
    Napoles Valdes, Juan E.
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2022, 51 (03): : 775 - 786
  • [25] ON FEJER-HERMITE-HADAMARD INEQUALITIES FOR FUNCTIONS INVOLVING FRACTIONAL INTEGRALS
    Mehmood, Sikander
    Zafar, Fiza
    Furkan, Hasan
    Yasmin, Nusrat
    Akdemir, Ahmet Ocak
    MISKOLC MATHEMATICAL NOTES, 2023, 24 (01) : 279 - 299
  • [26] Hermite-Hadamard, Trapezoid and Midpoint Type Inequalities Involving Generalized Fractional Integrals for Convex Functions
    Kara, Hasan
    Erden, Samet
    Budak, Huseyin
    SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2023, 20 (02): : 85 - 107
  • [27] On Hermite-Hadamard-type inequalities for systems of partial differential inequalities in the plane
    Jleli, Mohamed
    Samet, Bessem
    OPEN MATHEMATICS, 2023, 21 (01):
  • [28] QUANTUM HERMITE-HADAMARD TYPE INEQUALITIES AND RELATED INEQUALITIES FOR SUBADDITIVE FUNCTIONS
    Ali, Muhammad Aamir
    Sarikaya, Mehmet Zeki
    Budak, Huseyin
    Zhang, Zhiyue
    MISKOLC MATHEMATICAL NOTES, 2023, 24 (01) : 5 - 13
  • [29] Ohlin’s lemma and some inequalities of the Hermite–Hadamard type
    Tomasz Szostok
    Aequationes mathematicae, 2015, 89 : 915 - 926
  • [30] ON HERMITE-HADAMARD TYPE INEQUALITIES FOR MULTIPLICATIVE FRACTIONAL INTEGRALS
    Budak, H.
    Ozcelik, K.
    MISKOLC MATHEMATICAL NOTES, 2020, 21 (01) : 91 - 99