Inequalities of the Hermite–Hadamard Type Involving Numerical Differentiation Formulas

被引:0
|
作者
Andrzej Olbryś
Tomasz Szostok
机构
[1] Institute of Mathematics,
来源
Results in Mathematics | 2015年 / 67卷
关键词
Hermite–Hadamard inequality; differentiation formulas; convex functions; 26A51; 26D10; 39B62;
D O I
暂无
中图分类号
学科分类号
摘要
We observe that the Hermite–Hadamard inequality written in the form fx+y2≤F(y)-F(x)y-x≤f(x)+f(y)2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\left(\frac{x+y}{2}\right)\leq\frac{F(y)-F(x)}{y-x}\leq\frac{f(x)+f(y)}{2}$$\end{document}may be viewed as an inequality between two quadrature operators fx+y2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f\left(\frac{x+y}{2}\right)}$$\end{document}f(x)+f(y)2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\frac{f(x)+f(y)}{2}}$$\end{document} and a differentiation formula F(y)-F(x)y-x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\frac{F(y)-F(x)}{y-x}}$$\end{document}. We extend this inequality, replacing the middle term by more complicated ones. As it turns out in some cases it suffices to use Ohlin lemma as it was done in a recent paper (Rajba, Math Inequal Appl 17(2):557–571, 2014) however to get more interesting result some more general tool must be used. To this end we use Levin–Stečkin theorem which provides necessary and sufficient conditions under which inequalities of the type we consider are satisfied.
引用
收藏
页码:403 / 416
页数:13
相关论文
共 50 条
  • [1] Inequalities of the Hermite-Hadamard Type Involving Numerical Differentiation Formulas
    Olbrys, Andrzej
    Szostok, Tomasz
    RESULTS IN MATHEMATICS, 2015, 67 (3-4) : 403 - 416
  • [2] On the Hermite-Hadamard type inequalities involving generalized integrals
    Valdes, Juan E. Napoles
    CONTRIBUTIONS TO MATHEMATICS, 2022, 5 : 45 - 51
  • [3] Hermite-Hadamard and Hermite-Hadamard-Fejer Type Inequalities Involving Fractional Integral Operators
    Set, Erhan
    Akdemir, Ahmet Ocak
    Alan, Emrullah Aykan
    FILOMAT, 2019, 33 (08) : 2367 - 2380
  • [4] Functional Inequalities Involving Numerical Differentiation Formulas of Order Two
    Tomasz Szostok
    Bulletin of the Malaysian Mathematical Sciences Society, 2018, 41 : 2053 - 2066
  • [5] Functional Inequalities Involving Numerical Differentiation Formulas of Order Two
    Szostok, Tomasz
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2018, 41 (04) : 2053 - 2066
  • [6] Refinements of Hermite-Hadamard Type Inequalities Involving Fractional Integrals
    Wang, JinRong
    Li, Xuezhu
    Zhu, Chun
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2013, 20 (04) : 655 - 666
  • [7] On the Hermite-Hadamard type inequalities
    Zhao, Chang-Jian
    Cheung, Wing-Sum
    Li, Xiao-Yan
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [8] On The Generalized Inequalities Of The Hermite - Hadamard Type
    Napoles Valdes, Juan E.
    Bayraktar, Bahtiyar
    FILOMAT, 2021, 35 (14) : 4917 - 4924
  • [9] SOME HERMITE-HADAMARD TYPE INEQUALITIES INVOLVING FRACTIONAL INTEGRAL OPERATORS
    Ciurdariu, Loredana
    JOURNAL OF SCIENCE AND ARTS, 2022, (04) : 941 - 952
  • [10] Generalized Hermite-Hadamard type inequalities involving fractional integral operators
    Set, Erhan
    Noor, Muhammed Aslam
    Awan, Muhammed Uzair
    Gozpinar, Abdurrahman
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,