Machine learning and deep learning based predictive quality in manufacturing: a systematic review

被引:0
|
作者
Hasan Tercan
Tobias Meisen
机构
[1] University of Wuppertal,
来源
Journal of Intelligent Manufacturing | 2022年 / 33卷
关键词
Industry 4.0; Predictive quality; Machine learning; Deep learning; Manufacturing; Quality assurance; Artificial intelligence;
D O I
暂无
中图分类号
学科分类号
摘要
With the ongoing digitization of the manufacturing industry and the ability to bring together data from manufacturing processes and quality measurements, there is enormous potential to use machine learning and deep learning techniques for quality assurance. In this context, predictive quality enables manufacturing companies to make data-driven estimations about the product quality based on process data. In the current state of research, numerous approaches to predictive quality exist in a wide variety of use cases and domains. Their applications range from quality predictions during production using sensor data to automated quality inspection in the field based on measurement data. However, there is currently a lack of an overall view of where predictive quality research stands as a whole, what approaches are currently being investigated, and what challenges currently exist. This paper addresses these issues by conducting a comprehensive and systematic review of scientific publications between 2012 and 2021 dealing with predictive quality in manufacturing. The publications are categorized according to the manufacturing processes they address as well as the data bases and machine learning models they use. In this process, key insights into the scope of this field are collected along with gaps and similarities in the solution approaches. Finally, open challenges for predictive quality are derived from the results and an outlook on future research directions to solve them is provided.
引用
收藏
页码:1879 / 1905
页数:26
相关论文
共 50 条
  • [31] Part of speech tagging: a systematic review of deep learning and machine learning approaches
    Chiche, Alebachew
    Yitagesu, Betselot
    JOURNAL OF BIG DATA, 2022, 9 (01)
  • [32] Part of speech tagging: a systematic review of deep learning and machine learning approaches
    Alebachew Chiche
    Betselot Yitagesu
    Journal of Big Data, 9
  • [33] Predictive models for concrete properties using machine learning and deep learning approaches: A review
    Moein, Mohammad Mohtasham
    Saradar, Ashkan
    Rahmati, Komeil
    Mousavinejad, Seyed Hosein Ghasemzadeh
    Bristow, James
    Aramali, Vartenie
    Karakouzian, Moses
    JOURNAL OF BUILDING ENGINEERING, 2023, 63
  • [34] Machine Learning for Industry 4.0: A Systematic Review Using Deep Learning-Based Topic Modelling
    Mazzei, Daniele
    Ramjattan, Reshawn
    SENSORS, 2022, 22 (22)
  • [35] The use of machine learning and deep learning algorithms in functional magnetic resonance imaging-A systematic review
    Rashid, Mamoon
    Singh, Harjeet
    Goyal, Vishal
    EXPERT SYSTEMS, 2020, 37 (06)
  • [36] Machine Learning-Based Predictive Models for Patients with Venous Thromboembolism: A Systematic Review
    Danilatou, Vasiliki
    Dimopoulos, Dimitrios
    Kostoulas, Theodoros
    Douketis, James
    THROMBOSIS AND HAEMOSTASIS, 2024, 124 (11) : 1040 - 1052
  • [37] The future of skin cancer diagnosis: a comprehensive systematic literature review of machine learning and deep learning models
    Adamu, Shamsuddeen
    Alhussian, Hitham
    Aziz, Norshakirah
    Abdulkadir, Said Jadid
    Alwadin, Ayed
    Imam, Abdullahi Abubakar
    Abdullahi, Mujaheed
    Garba, Aliyu
    Saidu, Yahaya
    COGENT ENGINEERING, 2024, 11 (01):
  • [38] Machine Learning and Deep Learning for Diagnosis of Lumbar Spinal Stenosis: Systematic Review and Meta-Analysis
    Wang, Tianyi
    Chen, Ruiyuan
    Fan, Ning
    Zang, Lei
    Yuan, Shuo
    Du, Peng
    Wu, Qichao
    Wang, Aobo
    Li, Jian
    Kong, Xiaochuan
    Zhu, Wenyi
    JOURNAL OF MEDICAL INTERNET RESEARCH, 2024, 26
  • [39] Deep Learning and Neurology: A Systematic Review
    Valliani, Aly Al-Amyn
    Ranti, Daniel
    Oermann, Eric Karl
    NEUROLOGY AND THERAPY, 2019, 8 (02) : 351 - 365
  • [40] Deep Learning and Neurology: A Systematic Review
    Aly Al-Amyn Valliani
    Daniel Ranti
    Eric Karl Oermann
    Neurology and Therapy, 2019, 8 : 351 - 365