An Involutive GVW Algorithm and the Computation of Pommaret Bases

被引:0
作者
Amir Hashemi
Thomas Izgin
Daniel Robertz
Werner M. Seiler
机构
[1] Isfahan University of Technology,Department of Mathematical Sciences
[2] Universität Kassel,Institut für Mathematik
[3] University of Plymouth,School of Engineering, Computing and Mathematics
来源
Mathematics in Computer Science | 2021年 / 15卷
关键词
Gröbner bases; Module of syzygies; Signature-based algorithms; The GVW algorithm; Involutive bases; Quasi-stable position; Linear coordinate transformations; Pommaret bases; 13P10; 68W30;
D O I
暂无
中图分类号
学科分类号
摘要
The GVW algorithm computes simultaneously Gröbner bases of a given ideal and of the syzygy module of the given generating set. In this work, we discuss an extension of it to involutive bases. Pommaret bases play here a special role in several respects. We distinguish between a fully involutive GVW algorithm which determines involutive bases for both the given ideal and the syzygy module and a semi-involutive version which computes for the syzygy module only an ordinary Gröbner basis. A prototype implementation of the developed algorithms in Maple is described.
引用
收藏
页码:419 / 452
页数:33
相关论文
共 27 条
[1]  
Gao S(2016)A new framework for computing Gröbner bases Math. Comput. 85 449-465
[2]  
Volny F(1988)On an installation of Buchberger’s algorithm J. Symb. Comput. 6 275-286
[3]  
Wang M(1998)Involutive bases of polynomial ideals Math. Comput. Simul. 45 519-542
[4]  
Gebauer R(2018)Deterministic genericity for polynomial ideals J. Symb. Comput. 86 20-50
[5]  
Möller HM(1920)Sur les systèmes d’équations aux dérivées partielles J. Math. Pure Appl. 3 65-151
[6]  
Gerdt VP(2013)GVW algorithm over principal ideal domains J. Syst. Sci. Complex. 26 619-633
[7]  
Blinkov YA(2019)Speeding up the GVW algorithm via a substituting method J. Syst. Sci. Complex. 32 205-233
[8]  
Hashemi A(2009)A combinatorial approach to involution and Appl. Algebra Eng. Commun. Comput. 20 261-338
[9]  
Schweinfurter M(2016)-regularity II: structure analysis of polynomial modules with Pommaret bases Finite Fields Appl. 41 174-192
[10]  
Seiler WM(1996)An improvement over the GVW algorithm for inhomogeneous polynomial systems Math. Comput. Simul. 42 323-332