The Continuity Equation, Hermitian Metrics and Elliptic Bundles

被引:0
作者
Morgan Sherman
Ben Weinkove
机构
[1] California Polytechnic State University,Department of Mathematics
[2] Northwestern University,Department of Mathematics
来源
The Journal of Geometric Analysis | 2020年 / 30卷
关键词
Hermitian metrics; Continuity equation; Elliptic bundles; Chern–Ricci curvature; 53C55; 35J96; 32Q99;
D O I
暂无
中图分类号
学科分类号
摘要
We extend the continuity equation of La Nave–Tian to Hermitian metrics and establish its interval of maximal existence. The equation is closely related to the Chern–Ricci flow, and we illustrate this in the case of elliptic bundles over a curve of genus at least two.
引用
收藏
页码:762 / 776
页数:14
相关论文
共 51 条
[31]  
Zhang Z(1978)On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, I Commun. Pure Appl. Math. 31 339-411
[32]  
Tosatti V(undefined)undefined undefined undefined undefined-undefined
[33]  
Tosatti V(undefined)undefined undefined undefined undefined-undefined
[34]  
Wang Y(undefined)undefined undefined undefined undefined-undefined
[35]  
Weinkove B(undefined)undefined undefined undefined undefined-undefined
[36]  
Yang X(undefined)undefined undefined undefined undefined-undefined
[37]  
Tosatti V(undefined)undefined undefined undefined undefined-undefined
[38]  
Weinkove B(undefined)undefined undefined undefined undefined-undefined
[39]  
Tosatti V(undefined)undefined undefined undefined undefined-undefined
[40]  
Weinkove B(undefined)undefined undefined undefined undefined-undefined