The Continuity Equation, Hermitian Metrics and Elliptic Bundles

被引:0
作者
Morgan Sherman
Ben Weinkove
机构
[1] California Polytechnic State University,Department of Mathematics
[2] Northwestern University,Department of Mathematics
来源
The Journal of Geometric Analysis | 2020年 / 30卷
关键词
Hermitian metrics; Continuity equation; Elliptic bundles; Chern–Ricci curvature; 53C55; 35J96; 32Q99;
D O I
暂无
中图分类号
学科分类号
摘要
We extend the continuity equation of La Nave–Tian to Hermitian metrics and establish its interval of maximal existence. The equation is closely related to the Chern–Ricci flow, and we illustrate this in the case of elliptic bundles over a curve of genus at least two.
引用
收藏
页码:762 / 776
页数:14
相关论文
共 51 条
[1]  
Aubin T(1978)Équations du type Monge-Ampère sur les variétés kählériennes compactes Bull. Sci. Math. (2) 102 63-95
[2]  
Brînzănescu V(1994)Néron-Severi group for nonalgebraic elliptic surfaces. II. Non-Kählerian case Manuscr. Math. 84 415-420
[3]  
Cao HD(1985)Deformation of Kähler metrics to Kähler-Einstein metrics on compact Kähler manifolds Invent. Math. 81 359-372
[4]  
Cherrier P(1987)Équations de Monge-Ampère sur les variétés Hermitiennes compactes Bull. Sci. Math. (2) 111 343-385
[5]  
Evans LC(1982)Classical solutions of fully nonlinear, convex, second order elliptic equations Commun. Pure Appl. Math. 25 333-363
[6]  
Fong FT-H(2015)The collapsing rate of the Kähler-Ricci flow with regular infinite time singularity J. Reine Angew. Math. 703 95-113
[7]  
Zhang Z(1977)Le théorème de l’excentricité nulle C. R. Acad. Sci. Paris Sér. A-B 285 A387-A390
[8]  
Gauduchon P(2011)Convergence of the parabolic complex Monge-Ampère equation on compact Hermitian manifolds Commun. Anal. Geom. 19 277-303
[9]  
Gill M(2014)Collapsing of products along the Kähler-Ricci flow Trans. Am. Math. Soc. 366 3907-3924
[10]  
Gill M(2013)Collapsing of abelian fibred Calabi-Yau manifolds Duke Math. J. 162 517-551