Keller-Segel Chemotaxis Models: A Review

被引:0
作者
Gurusamy Arumugam
Jagmohan Tyagi
机构
[1] Indian Institute of Technology Gandhinagar,Discipline of Mathematics
来源
Acta Applicandae Mathematicae | 2021年 / 171卷
关键词
Chemotaxis; Keller-Segel models; Weak solutions; Renormalized solutions; Local existence; Global existence; Blow-up; Boundedness; Stabilization; Asymptotic behavior of solutions; Finite difference method; Finite element method; Finite Volume method; Discontinuous Galerkin method; 35A01; 35D30; 35B44; 34H15; 35K40; 65N30; 65M08; 65M06;
D O I
暂无
中图分类号
学科分类号
摘要
We recount and discuss some of the most important methods and blow-up criteria for analyzing solutions of Keller-Segel chemotaxis models. First, we discuss the results concerning the global existence, boundedness and blow-up of solutions to parabolic-elliptic type models. Thereafter we describe the global existence, boundedness and blow-up of solutions to parabolic-parabolic models. The numerical analysis of these models is still at a rather early stage only. We recollect quite a few of the known results on numerical methods also and direct the attention to a number of open problems in this domain.
引用
收藏
相关论文
共 390 条
[1]  
Adler J.(1975)Chemotaxis in bacteria Annu. Rev. Biochem. 44 341-356
[2]  
Ahn J.(2019)Eventual smoothness and stabilization of global weak solutions in parabolic-elliptic chemotaxis systems with logarithmic sensitivity Nonlinear Anal. 49 312-330
[3]  
Kang K.(2020)Nonnegative solutions to time fractional Keller-Segel system Math. Methods Appl. Sci. 27 702-720
[4]  
Lee J.(2016)Semi-implicit finite volume schemes for a chemotaxis-growth model Indag. Math. 235 4015-4031
[5]  
Akilandeeswari A.(2011)Finite volume methods for degenerate chemotaxis model J. Comput. Appl. Math. 54 1119-1136
[6]  
Tyagi J.(2020)Existence of weak solutions to the Keller-Segel chemotaxis system with additional cross-diffusion Nonlinear Anal., Real World Appl. 40 31-67
[7]  
Akhmouch M.(2015)Large mass global solutions for a class of Commun. Partial Differ. Equ. 4 436-473
[8]  
Amine M.B.(2017)-critical nonlocal aggregation equations and parabolic-elliptic Patlak-Keller-Segel models Trans. Am. Math. Soc. Ser. B 42 1663-1763
[9]  
Andreianov B.(2017)Finite-time blow-up in a degenerate chemotaxis system with flux limitation Commun. Partial Differ. Equ. 25 3738-3746
[10]  
Bendahmane M.(2015)A degenerate chemotaxis system with flux limitation: maximally extended solutions and absence of gradient blow-up Math. Models Methods Appl. Sci. 38 347-359