A proximal point algorithm with asymmetric linear term

被引:0
作者
Xingju Cai
机构
[1] Nanjing Normal University,School of Mathematical Sciences, Key Laboratory for NSLSCS of Jiangsu Province
来源
Optimization Letters | 2019年 / 13卷
关键词
Proximal point algorithm; Asymmetric proximal term; Linear convergence; Inexact APPA;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we propose an asymmetric proximal point algorithm for solving variational inequality problems. The algorithm is “asymmetric” in the sense that the matrix in the linear proximal term is not necessary to be a symmetric matrix, which makes the method more flexible, especially in dealing with problems with separable structures. Under some suitable conditions, we prove the global linear convergence of the algorithm. To make the method more practical, we allow the subproblem to be solved in an approximate manner and a flexible inaccuracy criterion with constant parameter is adopted. Finally, we report some preliminary numerical results.
引用
收藏
页码:777 / 793
页数:16
相关论文
共 53 条
[1]  
Hestenes MR(1969)Multiplier and gradient methods J. Optim. Theory Appl. 4 303-320
[2]  
Douglas J(1956)On the numerical solution of heat conduction problems in two and three space variables Trans. Amer. Math. Soc. 82 421-439
[3]  
Rachford HH(1976)A dual algorithm for the solution of nonlinear variational problems via finite element approximation Comput. Math. Appl. 2 17-40
[4]  
Gabay D(1997)Convergence of proximal-like algorithms SIAM J. Optim. 7 1069-1083
[5]  
Mercier B(1998)A generalized proximal point algorithm for the variational inequality problem in a Hilbert space SIAM J. Optim. 8 197-216
[6]  
Teboulle M(1993)Nonlinear proximal point algorithms using Bregman functions, with applications to convex programming Math. Oper. Res. 18 202-226
[7]  
Burachik RS(1998)Approximate iterations in Bregman-function-based proximal algorithms Math. Program. Ser. A 83 113-123
[8]  
Iusem AN(2003)A new hybrid generalized proximal point algorithm for variational inequality problems J. Glob. Optim. 26 125-140
[9]  
Eckstein J(1999)A logarithmic-quadratic proximal method for variational inequalities Comput. Optim. Appl. 12 31-40
[10]  
Eckstein J(1992)Proximal minimization algorithm with D-functions J. Optim. Theory Appl. 73 451-464