Partially APN functions with APN-like polynomial representations

被引:0
作者
Lilya Budaghyan
Nikolay Kaleyski
Constanza Riera
Pantelimon Stănică
机构
[1] University of Bergen,Department of Informatics
[2] Western Norway University of Applied Sciences,Department of Computer Science, Electrical Engineering and Mathematical Sciences
[3] Naval Postgraduate School,Department of Applied Mathematics
来源
Designs, Codes and Cryptography | 2020年 / 88卷
关键词
Boolean function; Almost perfect nonlinear (APN); Partial APN (pAPN); CCZ-equivalence; 94A60; 94C10; 06B30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we investigate several families of monomial functions with APN-like exponents that are not APN, but are partially 0-APN for infinitely many extensions of the binary field F2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_2$$\end{document}. We also investigate the differential uniformity of some binomial partial APN functions. Furthermore, the partial APN-ness for some classes of multinomial functions is investigated. We show also that the size of the pAPN spectrum is preserved under CCZ-equivalence.
引用
收藏
页码:1159 / 1177
页数:18
相关论文
共 23 条
  • [1] Berlekamp ER(1967)On the solutions of algebraic equations over finite fields Inf. Control 10 553-564
  • [2] Rumsey H(2010)A highly nonlinear differentially Finite Fields Appl. 16 231-242
  • [3] Solomon G(2008) uniform power mapping that permutes fields of even degree IEEE Trans. Inform. Theory 54 2354-2357
  • [4] Bracken C(2018)Classes of quadratic APN trinomials and hexanomials and related structures IEEE Trans. Inform. Theory 64 4399-4411
  • [5] Leander G(1998)On upper bounds for algebraic degrees of APN functions Des. Codes Cryptogr. 15 125-156
  • [6] Budaghyan L(1995)Codes, bent functions and permutations suitable For DES-like cryptosystems LNCS 950 356-365
  • [7] Carlet C(2009)Links between differential and linear cryptanalysis, advances in cryptology-EUROCRYPT’94 Finite Fields Appl. 15 748-773
  • [8] Budaghyan L(1959)Reversed Dickson polynomials over finite fields Am. J. Math 81 921-938
  • [9] Carlet C(1959)Collineation groups and non-Desarguesian planes Am. J. Math 82 113-119
  • [10] Helleseth T(undefined)Collineation groups and non-Desarguesian planes undefined undefined undefined-undefined