On the existence of solutions to a fractional (p, q)-Laplacian system on bounded domains

被引:0
作者
Chouhaïd Souissi
机构
[1] University of Sfax,Department of Mathematics, Faculty of Sciences of Sfax
来源
Journal of Elliptic and Parabolic Equations | 2022年 / 8卷
关键词
Nehari manifold; Critical point; Fractional (; , ; )-laplacian system; Variational; Primary 35R11; 35J25; Secondary 35J20; 47J30;
D O I
暂无
中图分类号
学科分类号
摘要
We study the existence of solutions for the fractional (p, q)-laplacian system (-Δ)psu=λb(x)|u|γ-2u+αα+βa(x)|u|α-2u|v|βinΩ,(-Δ)qlv=νc(x)|v|γ-2v+βα+βa(x)|u|α|v|β-2vinΩ,v=u=0inRN\Ω.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{llll} (-\Delta )_p^su &{} =\lambda b(x)|u|^{\gamma -2}u +\displaystyle \frac{\alpha }{\alpha +\beta } a(x)|u|^{\alpha -2}u |v |^\beta &{}in&{} \Omega , \\ (-\Delta )_q^lv &{} =\nu c(x)|v|^{\gamma -2}v + \displaystyle \frac{\beta }{\alpha +\beta }a(x)|u|^\alpha |v |^{\beta -2} v &{} in &{} \Omega , \\ v= u &{} =0 &{} in &{} {\mathbb {R}}^N\setminus \Omega . \end{array}\right. \end{aligned}$$\end{document}where Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} is a bounded set of RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^N$$\end{document} with C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1 $$\end{document}-boundary ∂Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial \Omega $$\end{document}, (-Δ)ps\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(-\Delta )_p^s$$\end{document} and (-Δ)ql\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(-\Delta )_q^l$$\end{document} are respectively the s-fractional p-laplacian and the l-fractional q-laplacian operators for l,s∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l,s\in (0,1)$$\end{document}, λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} and ν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu $$\end{document} are real parameters, a,b,c:Ω→Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a,b,c:\Omega \rightarrow \Omega $$\end{document} are appropriate functions and α,β,p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha ,\beta ,p$$\end{document} and q are reals satisfying adequate hypotheses.
引用
收藏
页码:231 / 253
页数:22
相关论文
共 20 条
[1]  
Caffarelli LA(2012)Nonlocal equations, drifts and games Nonlinear Partial Differ. Equ. Abel Symp. 7 37-52
[2]  
Chen W(2016)The Nehari manifold for a fractional Nonlinear Anal. Real World Appl. 27 80-92
[3]  
Deng S(2015)-Laplacian system involving concave-convex nonlinearities Proc. Indian Acad. Sci. (Math. Sci.) 125 545-558
[4]  
Goyal S(2012)A Nehari manifold for non-local elliptic operator with concave-convex non-linearities and signchanging weight function Bull. Sci. Math. 136 521-573
[5]  
Sreenadh K(1979)Hitchhiker’s guide to the fractional Sobolev spaces Doklady Acad. Sci. USSR. 247 1327-1331
[6]  
Di Nezza E(1990)On an approach to nonlinear equations Proc. Stekl. Ins. Math. 192 157-173
[7]  
Palatucci G(2015)On the method of fibering a solution in nonlinear boundary value problems Calc. Var. Partial Differ. Equ. 54 2785-2806
[8]  
Valdinoci E(2015)Multiple solutions for nonhomogeneous Schrödinger–Kirchhoff type equations involving the fractional J. Math. Anal. Appl. 424 1021-1041
[9]  
Pohozaev SI(2017)-Laplacian in Nonlinear Anal. Theory Methods Appl. Ser. A Theory Methods. 151 126-144
[10]  
Pohozaev SI(2021)Existence of solutions for Kirchhoff type problem involving the nonlocal fractional p-Laplacian Complex Var. Ellipt. Equ. 66 1731-1754