Sylow intersections and control of fusion

被引:0
作者
Hangyang Meng
Jinyue Tian
Xiuyun Guo
机构
[1] Shanghai University,Department of Mathematics
来源
Monatshefte für Mathematik | 2023年 / 201卷
关键词
Intersection; Sylow subgroup; Conjugate; Control of fusion; 20D10; 20D20;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a finite group and let P be a Sylow p-subgroup of G. We prove that if the automizer of each intersection of two distinct Sylow p-subgroups is a p-group, then NG(P)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{N}\,}}_G(P)$$\end{document} controls strong G-fusion in P. In fact, more general results will be discussed in this note.
引用
收藏
页码:1197 / 1201
页数:4
相关论文
共 6 条
  • [1] Alperin JL(1967)Sylow intersections and fusion J. Algebra. 6 222-241
  • [2] Cooper CDH(1968)Power automorphisms of a group Math. Z. 107 335-356
  • [3] Flavell P(2006)Automorphisms and fusion in finite groups J. Algebra. 300 472-479
  • [4] Goldschmidt DM(1970)A conjugation family for finite groups J. Algebra. 16 138-142
  • [5] Isaacs IM(2019)Cyclic intersections and control of fusion Arch. Math. (Basel) 113 561-563
  • [6] Kizmaz MY(undefined)undefined undefined undefined undefined-undefined