Coupled water transport and heat flux in seasonally frozen soils: uncertainties identification in multi-site calibration

被引:0
作者
Mousong Wu
Xiao Tan
Jingwei Wu
Jiesheng Huang
Per-Erik Jansson
Wenxin Zhang
机构
[1] Nanjing University,International Institute for Earth System Science (ESSI), Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Key Laboratory for Land Satellite Remote Sensing Applications of Ministry of Natural Resources,
[2] Wuhan University,State Key Laboratory of Water Resources and Hydropower Engineering Science
[3] Sichuan University,State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower
[4] KTH Royal Institute of Technology,Department of Sustainable Development, Environmental Science and Engineering
[5] Lund University,Department of Physical Geography and Ecosystem Science
来源
Environmental Earth Sciences | 2020年 / 79卷
关键词
Soil freezing; Thawing; CoupModel; Multi-site calibration; Uncertainty assessment;
D O I
暂无
中图分类号
学科分类号
摘要
The modeling of seasonally frozen soils is significant for understanding the hydrological process in cold regions. The water and heat transports of two seasonally frozen sites in northern China were simulated with the process-oriented CoupModel, and a more efficient Monte Carlo based method was employed to identify the uncertainties in multi-site calibration. Results showed that water and heat measured at different sites could be explained by 15 merged parameters including FreezepointFWi (d1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_{1}$$\end{document}), EquilAdjustPsi (ψeg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi_{eg}$$\end{document}), AlbedoKExp (ka\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_{a}$$\end{document}), RoughLBareSoilMom (z0M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z_{0M}$$\end{document}) etc. with common ranges to some extent and three parameters MinimumCondValue (kmin,uc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_{\min ,uc}$$\end{document}), WindLessExchangeSoil (ra,max-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_{a,\max }^{ - 1}$$\end{document}), and SThermalCondCoef (sk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s_{k}$$\end{document}) related to soil hydraulic conductivity, surface aerodynamic resistance and snow thermal conductivity respectively were identified to be site-dependent with site-specific ranges. The promotion in performance indices of interest variables indicated that the proposed systematic method had the potential to improve the multi-site simulation of heat and water in frozen soils based on CoupModel. However, the range ratios and posterior distributions of the merged parameters indicated the model structural uncertainty in CoupModel. And the comparison of the simulated variables between two sites demonstrated that the model structure uncertainty originated from the lack of consideration for the detailed processes related to ice cover and freezing point depression induced by soil solute. More detailed information on study sites as well as consideration of more detailed processes in frozen soil water-energy balance will expand the scope of model application in cold regions.
引用
收藏
相关论文
共 114 条
[1]  
Alvenäs G(1997)Model for evaporation, moisture and temperature of bare soil: calibration and sensitivity analysis Agric For Meteorol 88 47-56
[2]  
Jansson P-E(2006)A manifesto for the equilfinality thesis J Hydrol 320 18-36
[3]  
Beven K(1992)The future of distributed models: model calibration and uncertainty prediction Hydrol Process 6 279-298
[4]  
Beven K(2012)Regional-scale winter-spring temperature variability and chilling damage dynamics over the past two centuries in southeastern China Clim Dyn 39 919-928
[5]  
Binley A(2010)Implications of 21st century climate change for the hydrology of Washington State Climatic Change 102 225-260
[6]  
Duan J(1989)Simultaneous heat and water model of a freezing snow-residue-soil system I Theory Dev Trans ASAE 32 565-571
[7]  
Zhang Q-B(2015)Comparison of the surface energy budget between regions of seasonally frozen ground and permafrost on the Tibetan Plateau Atmos Res 153 553-564
[8]  
Lv L(2001)The surface energy balance of a snow cover: comparing measurements to two differentsimulation models Theoret Appl Climatol 70 81-96
[9]  
Zhang C(2004)Modeling water and heat balance of the boreal landscape-comparison of forest and arable land in Scandinavia J Appl Meteorol 43 1750-1767
[10]  
Elsner MM(2004)Water flow and heat transport in frozen soil: numerical solution and freeze-thaw applications Vadose Zone J 3 693-704