Spatial and decadal variations in satellite-based terrestrial evapotranspiration and drought over Inner Mongolia Autonomous Region of China during 1982–2009

被引:3
作者
Zhaolu Zhang
Hui Kang
Yunjun Yao
Ayad M Fadhil
Yuhu Zhang
Kun Jia
机构
[1] Shandong University of Technology,School of Resources and Environmental Engineering
[2] China Mobile Group Beijing Co.,State Key Laboratory of Remote Sensing Science, Faculty of Geographical Science
[3] Ltd.,Earth Sciences Department, Faculty of Science
[4] Beijing Normal University,College of Resource Environment and Tourism
[5] University of Kufa,undefined
[6] Capital Normal University,undefined
来源
Journal of Earth System Science | 2017年 / 126卷
关键词
Terrestrial evapotranspiration; evaporative wet index; inner Mongolia autonomous region; surface drought;
D O I
暂无
中图分类号
学科分类号
摘要
Evapotranspiration (ET) plays an important role in exchange of water budget and carbon cycles over the Inner Mongolia autonomous region of China (IMARC). However, the spatial and decadal variations in terrestrial ET and drought over the IMARC in the past was calculated by only using sparse meteorological point-based data which remain quite uncertain. In this study, by combining satellite and meteorology datasets, a satellite-based semi-empirical Penman ET (SEMI-PM) algorithm is used to estimate regional ET and evaporative wet index (EWI) calculated by the ratio of ET and potential ET (PET) over the IMARC. Validation result shows that the square of the correlation coefficients (R2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(R^{2})$$\end{document} for the four sites varies from 0.45 to 0.84 and the root-mean-square error (RMSE) is  0.78\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.78$$\end{document} mm. We found that the ET has decreased on an average of 4.8 mm per decade (p=0.10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=0.10$$\end{document}) over the entire IMARC during 1982–2009 and the EWI has decreased on an average of 1.1% per decade (p=0.08\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=0.08$$\end{document}) during the study period. Importantly, the patterns of monthly EWI anomalies have a good spatial and temporal correlation with the Palmer Drought Severity Index (PDSI) anomalies from 1982 to 2009, indicating EWI can be used to monitor regional surface drought with high spatial resolution. In high-latitude ecosystems of northeast region of the IMARC, both air temperature (Ta)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(T_{a})$$\end{document} and incident solar radiation (Rs)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(R_{s})$$\end{document} are the most important parameters in determining ET. However, in semiarid and arid areas of the central and southwest regions of the IMARC, both relative humidity (RH) and normalized difference vegetation index (NDVI) are the most important factors controlling annual variation of ET.
引用
收藏
相关论文
共 209 条
[1]  
Anderson M(2007)A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing J. Geophys. Res. 112 D10117-4317
[2]  
Norman J(2014)Land use/land cover classification of the vicinity of Lake Chad using NigeriaSat-1 and Landsat data; Environ Earth Sci. 71 4309-332
[3]  
Mecikalski J(2005)Primary production of Inner Mongolia, China, between 1982 and 1999 estimated by a satellite data-driven light use efficiency model; Global Planet Change 45 313-1047
[4]  
Otkin J(2015)GRACE gravity satellite observations of terrestrial water storage changes for drought characterization in the arid land of northwestern China Rem. Sens. 7 1021-1809
[5]  
Kustas W(2009)Energy balance and partition in Inner Mongolia steppe ecosystems with different land use types Agric. For. Meteorol. 149 1800-1130
[6]  
Babamaaji R(2009)Hydrological trend analysis in the Yellow River basin using a distributed hydrological model Water Resour. Res. 45 W00A13-61
[7]  
Lee J(2004)A global data set of palmer drought severity index for 1870–2002: Relationship with soil moisture and effects of surface warming J. Hydrometeorol. 5 1117-885
[8]  
Brogaard S(2014)Multi-site evaluation of terrestrial evaporation models using FLUXNET data Agric. For. Meteorol. 187 46-763
[9]  
Runnström M(2014)NDVI-based vegetation change in Inner Mongolia from 1982 to 2006 and its relationship to climate at the biome scale Adv. Meteorol. 69 2068-954
[10]  
Seaquist J(2005)Uncertainty in eddy covariance measurements and its application to physiological models Tree Physiol. 25 873-147