Cubature formulae for nearly singular and highly oscillating integrals

被引:0
作者
Donatella Occorsio
Giada Serafini
机构
[1] University of Basilicata,Department of Mathematics, Computer Sciences and Economics
来源
Calcolo | 2018年 / 55卷
关键词
Cubature rules; Orthogonal polynomials; Approximation by polynomials; 65D32; 41A05; 41A10;
D O I
暂无
中图分类号
学科分类号
摘要
The paper deals with the approximation of integrals of the type I(f;t)=∫Df(x)K(x,t)w(x)dx,x=(x1,x2),t∈T⊆Rp,p∈{1,2}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} I(f;{\mathbf {t}})=\int _{{\mathrm {D}}} f({\mathbf {x}}) {\mathbf {K}}({\mathbf {x}},{\mathbf {t}}) {\mathbf {w}}({\mathbf {x}}) d{\mathbf {x}},\quad \quad {\mathbf {x}}=(x_1,x_2),\quad {\mathbf {t}}\in \mathrm {T}\subseteq \mathbb {R}^p, \ p\in \{1,2\} \end{aligned}$$\end{document}where D=[-1,1]2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm {D}}=[-\,1,1]^2$$\end{document}, f is a function defined on D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm {D}}$$\end{document} with possible algebraic singularities on ∂D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial {\mathrm {D}}$$\end{document}, w\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {w}}$$\end{document} is the product of two Jacobi weight functions, and the kernel K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {K}}$$\end{document} can be of different kinds. We propose two cubature rules determining conditions under which the rules are stable and convergent. Along the paper we diffusely treat the numerical approximation for kernels which can be nearly singular and/or highly oscillating, by using a bivariate dilation technique. Some numerical examples which confirm the theoretical estimates are also proposed.
引用
收藏
相关论文
共 32 条
[1]  
Caliari M(2011)Padua2DM: fast interpolation and cubature at the Padua points in Matlab/Octave Numer. Algorithms 56 45-60
[2]  
De Marchi S(2013)Algebraic cubature by linear blending of elliptical arcs Appl. Numer. Math. 74 49-61
[3]  
Sommariva A(2010)A quadrature formula for integrals of highly oscillatory functions Rend. Circ. Mat. Palermo (2) Suppl. 82 279-303
[4]  
Vianello M(2014)Accurate 2.5-D boundary element method for conductive media Radio Sci. 49 389-399
[5]  
Da Fies G(1970)On the construction of Gaussian quadrature rules from modified moments Math. Comput. 24 245-260
[6]  
Sommariva A(2007)The construction of cubature rules for multivariate highly oscillatory integrals Math. Comput. 76 1955-1980
[7]  
Vianello M(2007)A sinh transformation for evaluating two dimensional nearly singular boundary element integrals Int. J. Numer. Methods Eng. 69 1460-1479
[8]  
De Bonis MC(1994)A fast algorithm for the construction of recurrence relations for modified moments, (English summary) Appl. Math. (Warsaw) 22 359-372
[9]  
Pastore P(2013)A Nyström method for two variables Fredholm integral equations on triangles Appl. Math. Comput. 219 7653-7662
[10]  
Dobbelaere D(2003)A polynomial collocation method for the numerical solution of weakly singular and singular integral equations on non-smooth boundaries Int. J. Methods Eng. 58 1985-2011