A wide linear range CMOS OTA and its application in continuous-time filters

被引:0
|
作者
Tangudu Bharat Kumar
Sougata Kumar Kar
Dharmendar Boolchandani
机构
[1] MNIT Jaipur,Department of ECE
[2] NIT Rourkela,Department of ECE
来源
Analog Integrated Circuits and Signal Processing | 2020年 / 103卷
关键词
Operational Transconductance Amplifier (OTA); Linearity; Low distortion; OTA-C filter;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we have proposed a highly linear Operational Transconductance Amplifier (OTA) with wide linear input range. The proposed OTA utilizes conventional source degeneration with an auxiliary differential pair which increases the linear range significantly by reducing the distortion components. The proposed OTA is targeted for current mode circuit applications including low-frequency continuous time filters. A second-order fully differential filter architecture is also implemented by using this proposed OTA. The linear OTA and the filter are implemented in SCL 180 nm CMOS process technology with 1.8 V supply voltage. The proposed OTA achieves third order harmonic distortion (HD3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textit{HD}}_3$$\end{document}) of -74.3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\,74.3$$\end{document} dB, inter modulation distortion (IM3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textit{IM}}_3$$\end{document}) of -75.5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\,75.5$$\end{document} dB for 600mVp-p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$600\,\hbox{mV}_{p-p}$$\end{document} differential input with 1 MHz signal frequency and a linear range of 0.9 V for 1% transconductance variation. The filter is designed for 100 kHz cutoff frequency and achieves HD3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textit{HD}}_3$$\end{document} of -68.75\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\,68.75$$\end{document} dB and IM3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textit{IM}}_3$$\end{document} of -64.3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\,64.3$$\end{document} dB for 300mVp-p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$300\,\hbox{mV}_{p-p}$$\end{document}, 10 kHz input signal.
引用
收藏
页码:283 / 290
页数:7
相关论文
共 50 条
  • [1] A wide linear range CMOS OTA and its application in continuous-time filters
    Kumar, Tangudu Bharat
    Kar, Sougata Kumar
    Boolchandani, Dharmendar
    ANALOG INTEGRATED CIRCUITS AND SIGNAL PROCESSING, 2020, 103 (02) : 283 - 290
  • [2] Design of highly linear tunable CMOS OTA for continuous-time filters
    Koziel, S
    Szczepanski, S
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2002, 49 (02) : 110 - 122
  • [3] A highly linear bulk-driven CMOS OTA for continuous-time filters
    Lihong Zhang
    Xuguang Zhang
    Ezz El-Masry
    Analog Integrated Circuits and Signal Processing, 2008, 54 : 229 - 236
  • [4] A highly linear bulk-driven CMOS OTA for continuous-time filters
    Zhang, Lihong
    Zhang, Xuguang
    El-Masry, Ezz
    ANALOG INTEGRATED CIRCUITS AND SIGNAL PROCESSING, 2008, 54 (03) : 229 - 236
  • [5] A highly linear wide range continuous tuning CMOS OTA
    Song, Shu-Xiang
    Yan, Guo-Ping
    Ca, Hua
    ASICON 2007: 2007 7TH INTERNATIONAL CONFERENCE ON ASIC, VOLS 1 AND 2, PROCEEDINGS, 2007, : 588 - 591
  • [6] A 1.8 VCMOS linear transconductor and its application to continuous-time filters
    Zhang, XA
    El-Masry, EL
    2004 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL 1, PROCEEDINGS, 2004, : 1012 - 1015
  • [7] A linear tunable wide input range CMOS OTA
    Duangmalai, Danupat
    Kaewdang, Khanittha
    TENCON 2014 - 2014 IEEE REGION 10 CONFERENCE, 2014,
  • [8] Dynamic range, noise and linearity optimization of continuous-time OTA-C filters
    Koziel, S
    Ramachandran, A
    Szczepanski, S
    Sánchez-Sinencio, E
    ICECS 2004: 11th IEEE International Conference on Electronics, Circuits and Systems, 2004, : 41 - 44
  • [9] Design of a linear CMOS OTA with wide input voltage range
    Kim, Doo-Hwan
    Yang, Sung-Hyun
    Kim, Ki-Sun
    Cho, Kyoung-Rok
    2006 INTERNATIONAL SYMPOSIUM ON COMMUNICATIONS AND INFORMATION TECHNOLOGIES,VOLS 1-3, 2006, : 1228 - +
  • [10] A fully differential CMOS OTA for continuous-time filter applications
    Pankiewicz, B
    Solecki, M
    Szczepanski, S
    1ST IEEE INTERNATIONAL CONFERENCE ON CIRCUITS AND SYSTEMS FOR COMMNICATIONS, PROCEEDINGS, 2002, : 42 - 45