Higher-derivative supergravity and moduli stabilization

被引:0
作者
David Ciupke
Jan Louis
Alexander Westphal
机构
[1] Deutsches Elektronen-Synchrotron DESY,Zentrum für Mathematische Physik
[2] Theory Group,undefined
[3] Fachbereich Physik der Universität Hamburg,undefined
[4] Universität Hamburg,undefined
来源
Journal of High Energy Physics | / 2015卷
关键词
Flux compactifications; Superstring Vacua; Supersymmetric Effective Theories; Supergravity Models;
D O I
暂无
中图分类号
学科分类号
摘要
We review the ghost-free four-derivative terms for chiral superfields in N=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=1 $$\end{document} supersymmetry and supergravity. These terms induce cubic polynomial equations of motion for the chiral auxiliary fields and correct the scalar potential. We discuss the different solutions and argue that only one of them is consistent with the principles of effective field theory. Special attention is paid to the corrections along flat directions which can be stabilized or destabilized by the higher-derivative terms. We then compute these higher-derivative terms explicitly for the type IIB string compactified on a Calabi-Yau orientifold with fluxes via Kaluza-Klein reducing the (α′)3R4 corrections in ten dimensions for the respective N=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=1 $$\end{document} Kähler moduli sector. We prove that together with flux and the known (α′)3-corrections the higher-derivative term stabilizes all Calabi-Yau manifolds with positive Euler number, provided the sign of the new correction is negative.
引用
收藏
相关论文
共 129 条
  • [1] Cecotti S(1987)Structure of the Scalar Potential in General N = 1 Higher Derivative Supergravity in Four-dimensions Phys. Lett. B 187 321-undefined
  • [2] Ferrara S(2011)Supersymmetric P (X, ϕ) and the Ghost Condensate Phys. Rev. D 83 125031-undefined
  • [3] Girardello L(2012)Higher-Derivative Chiral Superfield Actions Coupled to N = 1 Supergravity Phys. Rev. D 86 085019-undefined
  • [4] Khoury J(2012)Emerging Potentials in Higher-Derivative Gauged Chiral Models Coupled to N = 1 Supergravity JHEP 11 077-undefined
  • [5] Lehners J-L(2014)Supersymmetry Breaking by Higher Dimension Operators Nucl. Phys. B 879 348-undefined
  • [6] Ovrut B(2014)Supersymmetric DBI inflation Phys. Lett. B 718 1-undefined
  • [7] Koehn M(2012)DBI Inflation in N = 1 Supergravity Phys. Rev. D 86 123510-undefined
  • [8] Lehners J-L(2013)On the Starobinsky Model of Inflation from Supergravity Nucl. Phys. B 876 187-undefined
  • [9] Ovrut BA(2014)Cosmological super-bounce Phys. Rev. D 90 025005-undefined
  • [10] Farakos F(2014)Non-Canonical Inflation in Supergravity JHEP 05 050-undefined