The extensibility of the D(±k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D(\pm k)$$\end{document}-triple {k∓1,k,4k∓1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{k\mp 1,k, 4k\mp 1\}$$\end{document}

被引:1
作者
Appolinaire Dossavi-Yovo
Bo He
Alain Togbé
机构
[1] Institut de Mathématiques et de Sciences Physiques,Department of Mathematics
[2] Institute of Mathematics,Department of Mathematics, Statistics, and Computer Science
[3] Aba Teachers University,undefined
[4] Hubei University for Nationalities,undefined
[5] Purdue University Northwest,undefined
关键词
Diophantine ; -tuple; Pell equation; Linear forms in logarithms; 11D09; 11D45; 11B37; 11J86;
D O I
10.1007/s13370-016-0466-4
中图分类号
学科分类号
摘要
In this paper, we consider the D(±k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D(\pm k)$$\end{document}-triple {k∓1,k,4k∓1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{k\mp 1,k, 4k\mp 1\}$$\end{document} and we prove that, if k is not a perfect square then:There is no d such that {k-1,k,4k-1,d}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{k-1,k, 4k-1, d\}$$\end{document} is a D(k)-quadruple;If {k,k+1,4k+1,d}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{k,k+1,4k+1,d \}$$\end{document} is a D(-k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D(-k)$$\end{document}-quadruple, then d=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=1$$\end{document}. This extends a work done by Fujita [13].
引用
收藏
页码:563 / 574
页数:11
相关论文
共 33 条
[1]  
Baker A(1969)The equations Q. J. Math. Oxford 20 129-137
[2]  
Davenport H(1998) and J. Reine Angew. Math. 498 173-199
[3]  
Bennett MA(1985)On the number of solutions of simultaneous Pell equations Math. Comput. 45 613-620
[4]  
Brown E(2015)Sets in which Acta Arith. 168 201-219
[5]  
Cipu M(2016) is a always a square Acta Arith. 173 365-832
[6]  
Cipu M(1997)Further remarks on Diophantine quintuples Publ. Math. Debrecen 51 311-322
[7]  
Trudgian T(2004)Searching for Diophantine quintuples J. Reine Angew. Math. 566 183-214
[8]  
Dujella A(2014)The problem of the extension of a parametric family of Diophantine triples Monatsh. Math. 175 227-239
[9]  
Dujella A(2014)There are only finitely many Diophantine quintuples Glas. Mat. Ser. III 25-36
[10]  
Elsholtz C(2014)On Diophantine quintuples and J. Number Theory 145 604-631