Constraining CP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{CP} $$\end{document}-violation in the Higgs-top-quark interaction using machine-learning-based inference

被引:0
作者
Henning Bahl
Simon Brass
机构
[1] University of Chicago,
[2] Department of Physics,undefined
[3] Deutsches Elektronen-Synchrotron DESY,undefined
关键词
Beyond Standard Model; CP violation; Higgs Physics;
D O I
10.1007/JHEP03(2022)017
中图分类号
学科分类号
摘要
While CP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{CP} $$\end{document} violation in the Higgs interactions with massive vector boson is already tightly constrained, the CP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{CP} $$\end{document} nature of the Higgs interactions with fermions is far less constrained. In this work, we assess the potential of machine-learning-based inference methods to constrain CP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{CP} $$\end{document} violation in the Higgs top-Yukawa coupling. This approach enables the use of the full available kinematic information. Concentrating on top-associated Higgs production with the Higgs decaying to two photons, we derive expected exclusion bounds for the LHC and the high-luminosity phase of the LHC. We also study the dependence of these bounds on the Higgs interaction with massive vector bosons and their robustness against theoretical uncertainties. In addition to deriving expected exclusion bounds, we discuss at which level a non-zero CP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{CP} $$\end{document}-violating top-Yukawa coupling can be distinguished from the SM. Moreover, we analyze which kinematic distributions are most sensitive to a CP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{CP} $$\end{document}-violating top-Yukawa coupling.
引用
收藏
相关论文
共 81 条
  • [1] Brod J(2013)undefined JHEP 11 180-undefined
  • [2] Haisch U(2018)undefined JHEP 01 089-undefined
  • [3] Zupan J(2019)undefined JHEP 04 024-undefined
  • [4] de Vries J(2016)undefined JHEP 02 011-undefined
  • [5] Postma M(2019)undefined JHEP 04 090-undefined
  • [6] van de Vis J(2013)undefined JHEP 12 077-undefined
  • [7] White G(2014)undefined JHEP 04 004-undefined
  • [8] De Vries J(2014)undefined Eur. Phys. J. C 74 3065-undefined
  • [9] Postma M(2015)undefined Eur. Phys. J. C 75 267-undefined
  • [10] van de Vis J(2017)undefined Eur. Phys. J. C 77 34-undefined