Multi-valued fields. II

被引:0
作者
Ershov Yu.L.
机构
关键词
Absolute ramification index; Boolean family of valuation rings; Multi-valued field;
D O I
10.1023/A:1021703629535
中图分类号
学科分类号
摘要
The main model-theoretic results on multi-valued fields with near Boolean families of valuation rings obtained in [1, Ch. 4, Sec. 4-6] are generalized along two lines: we weaken the restriction on being absolutely unramified to a condition of being finite for an absolute ramification index, and we combine, through context, Theorems 4-6.2 and 4-6-4 (4-6-3 and 4-6.5). © 2002 Plenum Publishing Corporation.
引用
收藏
页码:374 / 390
页数:16
相关论文
共 8 条
  • [1] Ershov Yu. L., Multi-Valued Fields in Russian, (2000)
  • [2] Ershov Y.L., Multiply valued fields, Usp. Mat. Nauk, 37, 3, pp. 55-93, (1982)
  • [3] Balbes R., Dwinger Ph., Distributive Lattices, (1974)
  • [4] Chang C.C., Keisler H.J., Model Theory, (1973)
  • [5] Ershov Y.L., Immediate extensions of Prüfer rings, Algebra Logika, 40, 3, pp. 262-289, (2001)
  • [6] Prestel A., Schmid J., Decidability of the rings of real algebraic and p-adic algebraic integers, J. Reme Aug. Math., 414, pp. 141-148, (1991)
  • [7] Darniere L., Nonsingular Hasse principle for rings, J. Reine Ang. Math., 529, pp. 75-100, (2000)
  • [8] Green B., Pop F., Roquette P., On Rumely's local-global principle, Jahr. Deutsche Math. Ver., 97, 2, pp. 43-74, (1995)