An Agmon estimate for Schrödinger operators on graphs

被引:0
|
作者
Stefan Steinerberger
机构
[1] University of Washington,Department of Mathematics
来源
关键词
Agmon estimate; Agmon metric; Schrödinger operator; Graph; 31B15; 35J10; 35R02;
D O I
暂无
中图分类号
学科分类号
摘要
The Agmon estimate shows that eigenfunctions of Schrödinger operators, -Δϕ+Vϕ=Eϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ -\Delta \phi + V \phi = E \phi $$\end{document}, decay exponentially in the ‘classically forbidden’ region where the potential exceeds the energy level x:V(x)>E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{ x: V(x) > E \right\} $$\end{document}. Moreover, the size of |ϕ(x)|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|\phi (x)|$$\end{document} is bounded in terms of a weighted (Agmon) distance between x and the allowed region. We derive such a statement on graphs when -Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\Delta $$\end{document} is replaced by the graph Laplacian L=D-A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L = D-A$$\end{document}: we identify an explicit Agmon metric and prove a pointwise decay estimate in terms of the Agmon distance.
引用
收藏
相关论文
共 50 条
  • [1] An Agmon–Allegretto–Piepenbrink principle for Schrödinger operators
    Stefano Buccheri
    Luigi Orsina
    Augusto C. Ponce
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2022, 116
  • [3] A New Estimate for the Groundstate Energy of Schrödinger Operators
    Asao Arai
    Letters in Mathematical Physics, 1997, 42 : 215 - 227
  • [4] Optimal Hardy inequalities for Schrödinger operators on graphs
    Matthias Keller
    Yehuda Pinchover
    Felix Pogorzelski
    Communications in Mathematical Physics, 2018, 358 : 767 - 790
  • [5] Magnetic-Sparseness and Schrödinger Operators on Graphs
    Michel Bonnefont
    Sylvain Golénia
    Matthias Keller
    Shiping Liu
    Florentin Münch
    Annales Henri Poincaré, 2020, 21 : 1489 - 1516
  • [6] Eigenfunction Expansions for Schrödinger Operators on Metric Graphs
    Daniel Lenz
    Carsten Schubert
    Peter Stollmann
    Integral Equations and Operator Theory, 2008, 62 : 541 - 553
  • [7] Asymptotic isospectrality of Schrödinger operators on periodic graphs
    Saburova, Natalia
    ANALYSIS AND MATHEMATICAL PHYSICS, 2024, 14 (04)
  • [8] Essential Spectrum of Schrödinger Operators on Periodic Graphs
    V. S. Rabinovich
    Functional Analysis and Its Applications, 2018, 52 : 66 - 69
  • [9] Spectra of Schrödinger Operators on Equilateral Quantum Graphs
    Konstantin Pankrashkin
    Letters in Mathematical Physics, 2006, 77 : 139 - 154
  • [10] A Weighted Dispersive Estimate for Schrödinger Operators in Dimension Two
    M. Burak Erdoğan
    William R. Green
    Communications in Mathematical Physics, 2013, 319 : 791 - 811