Explicit formulae for sums of products of Bernoulli polynomials, including poly-Bernoulli polynomials

被引:0
作者
Ken Kamano
Takao Komatsu
机构
[1] Osaka Institute of Technology,Department of Mathematics
[2] Hirosaki University,Graduate School of Science and Technology
来源
The Ramanujan Journal | 2014年 / 33卷
关键词
Poly-Bernoulli numbers; Sums of products; 11B68; 11B73;
D O I
暂无
中图分类号
学科分类号
摘要
We study sums of products of Bernoulli polynomials, including poly-Bernoulli polynomials. As a main result, for any positive integer m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$m$\end{document}, explicit expressions of sums of m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$m$\end{document} products are given. This result extends that of the first author, as well as the famous Euler formula about sums of two products of Bernoulli numbers.
引用
收藏
页码:301 / 313
页数:12
相关论文
共 9 条
  • [1] Bayad A.(2011)Polylogarithms and poly-Bernoulli polynomials Kyushu J. Math. 65 15-24
  • [2] Hamahata Y.(2010)The Arakawa–Kaneko zeta functions Ramanujan J. 22 153-162
  • [3] Coppo M.-A.(1996)Sums of products of Bernoulli numbers J. Number Theory 60 23-41
  • [4] Candelpergher B.(1968)Cardinality of finite topologies J. Comb. Theory 5 82-86
  • [5] Dilcher K.(1997)Poly-Bernoulli numbers J. Théor. Nr. Bordx. 9 199-206
  • [6] Sharp H.(1922)Mémoire sur les polynomes de Bernoulli Acta Math. 43 121-196
  • [7] Kaneko M.(2012)On generalized poly-Bernoulli numbers and related J. Number Theory 132 156-170
  • [8] Nölund N.E.(undefined)-functions undefined undefined undefined-undefined
  • [9] Sasaki Y.(undefined)undefined undefined undefined undefined-undefined