ideal: an R/Bioconductor package for interactive differential expression analysis

被引:0
作者
Federico Marini
Jan Linke
Harald Binder
机构
[1] University Medical Center of the Johannes Gutenberg University Mainz,Center for Thrombosis and Hemostasis (CTH)
[2] University Medical Center of the Johannes Gutenberg University Mainz,Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI)
[3] University of Freiburg,Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center
来源
BMC Bioinformatics | / 21卷
关键词
RNA-Seq; Differential expression; Interactive data analysis; Data visualization; Transcriptomics; R; Bioconductor; Shiny; Web application; Reproducible research;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 497 条
[21]  
Patro R(2015)Promoting an open research culture Science 348 1422-13
[22]  
Robinson MD(2016)The FAIR guiding principles for scientific data management and stewardship Sci Data 3 160018-11
[23]  
Oshlack A(2016)rintrojs: a Wrapper for the Intro.js Library J Open Source Softw 1 2016-2705
[24]  
Robinson MD(2011)Reproducible research in computational science Science 334 1226-851
[25]  
Young MD(2014)Journals unite for reproducibility Science 346 679-476
[26]  
Love MI(2016)Enhancing reproducibility for computational methods Science 354 1240-2522
[27]  
Anders S(2016)Development of applications for interactive and reproducible research: a case study Genom Comput Biol 3 1-111
[28]  
Kim V(2017)Toward standard practices for sharing computer code and programs in neuroscience Nat Neurosci 20 770-431
[29]  
Huber W(2018)Data visualization tools drive interactivity and reproducibility in online publishing Nature 554 133-9551
[30]  
Soneson C(2015)VisRseq: R-based visual framework for analysis of sequencing data BMC Bioinf 16 2-580