ideal: an R/Bioconductor package for interactive differential expression analysis

被引:0
作者
Federico Marini
Jan Linke
Harald Binder
机构
[1] University Medical Center of the Johannes Gutenberg University Mainz,Center for Thrombosis and Hemostasis (CTH)
[2] University Medical Center of the Johannes Gutenberg University Mainz,Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI)
[3] University of Freiburg,Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center
来源
BMC Bioinformatics | / 21卷
关键词
RNA-Seq; Differential expression; Interactive data analysis; Data visualization; Transcriptomics; R; Bioconductor; Shiny; Web application; Reproducible research;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 497 条
[1]  
Wang Z(2009)RNA-Seq: a revolutionary tool for transcriptomics Nat Rev Genet 10 57-63
[2]  
Gerstein M(2016)A survey of best practices for RNA-seq data analysis Genome Biol 17 13-173
[3]  
Snyder M(2019)RNA sequencing data: Hitchhiker’s guide to expression analysis Ann Rev Biomed Data Sci 2 139-1786
[4]  
Conesa A(2010)From RNA-seq reads to differential expression results Genome Biol 11 220-1667
[5]  
Madrigal P(2015)RNA-Seq workflow: gene-level exploratory analysis and differential expression F1000Research 4 1070-21
[6]  
Tarazona S(2015)Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences F1000Research 4 1521-169
[7]  
Gomez-Cabrero D(2015)Limma powers differential expression analyses for RNA-sequencing and microarray studies Nucleic Acids Res 43 47-930
[8]  
Cervera A(2016)Next-generation sequencing: the translational medicine approach from “bench to bedside to population” Medicines 3 14-527
[9]  
McPherson A(2013)Count-based differential expression analysis of RNA sequencing data using R and Bioconductor Nat Protoc 8 1765-4297
[10]  
Szcześniak MW(2016)Transcript-level expression analysis of RNA-seq experiments with HISAT. StringTie and Ballgown Nat Protoc 11 1650-121