Morrey Sequence Spaces: Pitt’s Theorem and Compact Embeddings

被引:0
作者
Dorothee D. Haroske
Leszek Skrzypczak
机构
[1] University of Rostock,Institute of Mathematics
[2] Adam Mickiewicz University,Faculty of Mathematics and Computer Science
来源
Constructive Approximation | 2020年 / 51卷
关键词
Morrey sequence spaces; Pitt’s theorem; compact embeddings; entropy numbers; 46E35; 46A45; 46B45;
D O I
暂无
中图分类号
学科分类号
摘要
Morrey (function) spaces and, in particular, smoothness spaces of Besov–Morrey or Triebel–Lizorkin–Morrey type have enjoyed a lot of interest recently. Here we turn our attention to Morrey sequence spaces mu,p=mu,p(Zd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_{u,p}=m_{u,p}(\mathbb {Z}^d)$$\end{document}, 0<p≤u<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<p\le u<\infty $$\end{document}, which have yet been considered almost nowhere. They are defined as natural generalizations of the classical ℓp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _p$$\end{document} spaces. We consider some basic features, embedding properties, a pre-dual, a corresponding version of Pitt’s compactness theorem, and further characterize the compactness of embeddings of related finite-dimensional spaces.
引用
收藏
页码:505 / 535
页数:30
相关论文
共 61 条
  • [1] Adams DR(2004)Nonlinear potential analysis on Morrey spaces and their capacities Indiana Univ. Math. J. 53 1629-1663
  • [2] Xiao J(2011)Morrey potentials and harmonic maps Commun. Math. Phys. 308 439-456
  • [3] Adams DR(2012)Morrey spaces in harmonic analysis Ark. Mat. 50 201-230
  • [4] Xiao J(2017)A discrete version of Morrey local spaces Izv. Ross. Akad. Nauk Ser. Mat. 81 3-30
  • [5] Adams DR(2000)On Pitt’s theorem for operators between scalar and vector-valued quasi-Banach sequence spaces Monatsh. Math. 130 7-18
  • [6] Xiao J(2009)A short proof of Pitt’s compactness theorem Proc. AMS 137 1371-1372
  • [7] Berezhnoĭ EI(2002)An embedding theorem for Campanato spaces Electron. J. Differ. Equ. 66 1-17
  • [8] Defant A(2006)Littlewood–Paley characterization for Campanato spaces J. Funct. Spaces Appl. 4 193-220
  • [9] López Molina JA(2003)A “nonlinear” proof of Pitt’s compactness theorem Proc. AMS 131 3693-3694
  • [10] Rivera MJ(2018)Discrete Morrey spaces and their inclusion properties Math. Nachr. 291 1283-1296