Assessing mean and median filters in multiple testing for large-scale imaging data

被引:0
作者
Chunming Zhang
机构
[1] University of Wisconsin-Madison,
来源
TEST | 2014年 / 23卷
关键词
Brain fMRI; False discovery rate; Median; -value; Sensitivity; Specificity; 62H35; 62G10; 62P10; 62E20;
D O I
暂无
中图分类号
学科分类号
摘要
A new multiple testing procedure, called the FDRL procedure, was proposed by Zhang et al. (Ann Stat 39:613–642, 2011) for detecting the presence of spatial signals for large-scale 2D and 3D imaging data. In contrast to the conventional multiple testing procedure, the FDRL procedure substitutes each p-value by a locally aggregated median filter of p-values. This paper examines the performance of another commonly used filter, mean filter, in the FDRL procedure. It is demonstrated that when the p-values are independent and uniformly distributed under the true null hypotheses, (i) in view of estimating the resulting false discovery rate, the mean filter better alleviates the “lack of identification phenomenon” of the FDRL procedure than the median filter; (ii) in view of signal detection, the median filter enjoys the “edge-preserving property” and lends support to its better performance in detecting sparse signals than the mean filter.
引用
收藏
页码:51 / 71
页数:20
相关论文
共 50 条
[21]   Efficient median estimation for large-scale sensor RFID systems [J].
Mustafa, Huda El Hag ;
Zhu, Xiaojun ;
Li, Qun ;
Chen, Guihai .
INTERNATIONAL JOURNAL OF SENSOR NETWORKS, 2012, 12 (03) :171-183
[22]   Computational study of large-scale p-Median problems [J].
Pasquale Avella ;
Antonio Sassano ;
Igor Vasil'ev .
Mathematical Programming, 2007, 109 :89-114
[23]   Factor Analysis for Multiple Testing (FAMT): An R Package for Large-Scale Significance Testing under Dependence [J].
Causeur, David ;
Friguet, Chloe ;
Houee-Bigot, Magalie ;
Kloareg, Maela .
JOURNAL OF STATISTICAL SOFTWARE, 2011, 40 (14) :1-19
[24]   Correlation and large-scale simultaneous significance testing [J].
Efron, Bradley .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2007, 102 (477) :93-103
[25]   Statistical inference and large-scale multiple testing for high-dimensional regression models [J].
Cai, T. Tony ;
Guo, Zijian ;
Xia, Yin .
TEST, 2023, 32 (04) :1135-1171
[26]   Large-scale dependent multiple testing via hidden semi-Markov models [J].
Wang, Jiangzhou ;
Wang, Pengfei .
COMPUTATIONAL STATISTICS, 2024, 39 (03) :1093-1126
[27]   Simultaneous control of all false discovery proportions in large-scale multiple hypothesis testing [J].
Goeman, Jelle ;
Meijer, Rosa ;
Krebs, Thijmen ;
Solari, Aldo .
BIOMETRIKA, 2019, 106 (04) :841-856
[28]   Semi-parametric hidden Markov model for large-scale multiple testing under dependency [J].
Kim, Joungyoun ;
Lim, Johan ;
Lee, Jong Soo .
STATISTICAL MODELLING, 2024, 24 (04) :320-343
[29]   Assessing the Effectiveness of Direct Data Merging Strategy in Long-Term and Large-Scale Pharmacometabonomics [J].
Cui, Xuejiao ;
Yang, Qingxia ;
Li, Bo ;
Tang, Jing ;
Zhang, Xiaoyu ;
Li, Shuang ;
Li, Fengcheng ;
Hu, Jie ;
Lou, Yan ;
Qiu, Yunqing ;
Xue, Weiwei ;
Zhu, Feng .
FRONTIERS IN PHARMACOLOGY, 2019, 10
[30]   Large-scale dependent multiple testing via higher-order hidden Markov models [J].
Li, Canhui ;
Wang, Jiangzhou ;
Wang, Pengfei .
JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2024,