Extremality of Graph Entropy Based on Degrees of Uniform Hypergraphs with Few Edges

被引:0
作者
Dan Hu
Xue Liang Li
Xiao Gang Liu
Sheng Gui Zhang
机构
[1] Northwestern Polytechnical University,Department of Applied Mathematics
[2] Nankai University,Center for Combinatorics
[3] Northwestern Polytechnical University,Xi’an
来源
Acta Mathematica Sinica, English Series | 2019年 / 35卷
关键词
Shannon’s entropy; graph entropy; degree sequence; hypergraph; 05C50; 15A18;
D O I
暂无
中图分类号
学科分类号
摘要
Let H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{H}$$\end{document} be a hypergraph with n vertices. Suppose that d1,d2,…,dn are degrees of the vertices of H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{H}$$\end{document}. The t-th graph entropy based on degrees ofH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{H}$$\end{document} is defined as Idt(H)=−∑i=1n(dit∑j=1ndjtlogdit∑j=1ndjt)=log(∑i=1ndit)−∑i=1n(dit∑j=1ndjtlogdit),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_{d}^{t}(\mathcal{H})=-\sum\limits_{i=1}^{n}\left(\frac{d_{i}^{t}}{\sum\nolimits_{j=1}^{n}d_{j}^{t}}\log \frac{d_{i}^{t}}{\sum\nolimits_{j=1}^{n}d_{j}^{t}}\right)=\log\left(\sum\limits_{i=1}^{n}d_{i}^{t}\right)-\sum\limits_{i=1}^{n}\left(\frac{d_{i}^{t}}{\sum\nolimits_{j=1}^{n}d_{j}^{t}}\log d_{i}^{t}\right),$$\end{document} where t is a real number and the logarithm is taken to the base two. In this paper we obtain upper and lower bounds of Idt(H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_{d}^{t}(\mathcal{H})$$\end{document} for t = 1, when H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{H}$$\end{document} is among all uniform supertrees, unicyclic uniform hypergraphs and bicyclic uniform hypergraphs, respectively.
引用
收藏
页码:1238 / 1250
页数:12
相关论文
共 27 条
  • [1] Cao S(2014)Extremality of degree-based graph entropies Inform. Sci. 278 22-33
  • [2] Dehmer M(2008)Information processing in complex networks: graph entropy and information functionals Appl. Math. Comput. 201 82-94
  • [3] Shi Y(2011)A history of graph entropy measures Inform. Sci. 181 57-78
  • [4] Dehmer M(2016)Maximizing spectral radii of uniform hypergraphs with few edges Discuss. Math. Graph Theory 36 845-856
  • [5] Dehmer M(2013)Cored hypergraphs, power hypergraphs and their Laplacian Linear Algebra. Appl. 439 2980-2998
  • [6] Mowshowitz A(2016)-eigenvalues Inform. Sci. 370/371 424-427
  • [7] Fan Y Z(1988)On the extremal values of general degree-based graph entropies SIAM J. Discrete Math. 1 71-79
  • [8] Tan Y Y(2016)Graphs that split entropies Journal of Combinatorial Optimization 32 741-764
  • [9] Peng X X(2015)The extremal spectral radii of Appl. Math. Comput. 259 470-479
  • [10] Hu S(1968)-uniform supertrees Bull. Math. Biophys. 30 175-204