We study the thermoelectric transport properties in the three-dimensional Anderson model of localization near the metal-insulator transition (MIT). In particular, we investigate the dependence of the thermoelectric power S, the thermal conductivity K, and the Lorenz number L0 on temperature T. We first calculate the T dependence of the chemical potential μ from the number density n of electrons at the MIT using an averaged density of states obtained by diagonalization. Without any additional approximation, we determine from \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}\end{document} the behavior of S, K and L0 at low T as the MIT is approached. We find that \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}\end{document} and K decrease to zero at the MIT as \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}\end{document} and show that S does not diverge. Both S and L0 become temperature independent at the MIT and depend only on the critical behavior of the conductivity.