A priori and a posteriori error analysis for discontinuous Galerkin finite element approximations of biharmonic eigenvalue problems

被引:1
|
作者
Liang Wang
Chunguang Xiong
Huibin Wu
Fusheng Luo
机构
[1] Beijing Institute of Technology,Department of Mathematics
[2] State Oceanic Administration,Third Institute of Oceanography
来源
关键词
Biharmonic eigenvalue problems; DGFEM; A priori error estimate; A posteriori error estimate; 65F10; 65N30; 65N55;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we express and analyze mixed discontinuous Galerkin(DG) methods of biharmonic eigenvalue problems as well as present the error analysis for them. The analysis consists of two parts. First, we propose a residual-based a posteriori error estimator in the approximate eigenfunctions and eigenvalues. The error in the eigenfunctions is measured both in the L2 and DG (energy-like) norms. In addition, we prove that if the error estimator converges to zero, then the distance of the computed eigenfunction from the true eigenspace also converges to zero, and so, the computed eigenvalue converges to a true eigenvalue. Next, we establish an a priori error estimate with the optimal convergence order both in the L2 and DG norms. We show that the methods can retain the same convergence properties they enjoy in the case of source problems.
引用
收藏
页码:2623 / 2646
页数:23
相关论文
共 50 条
  • [21] A-priori and a-posteriori error estimates for discontinuous Galerkin method of the Maxwell eigenvalue problem
    Zhang, Jun
    Luo, Zijiang
    Han, Jiayu
    Chen, Hu
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2024, 176 : 190 - 201
  • [22] An a posteriori error bound for discontinuous Galerkin approximations of convection-diffusion problems
    Georgoulis, Emmanuil H.
    Hall, Edward
    Makridakis, Charalambos
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2019, 39 (01) : 34 - 60
  • [23] A POSTERIORI ERROR ESTIMATES IN ADINI FINITE ELEMENT FOR EIGENVALUE PROBLEMS
    Yi-du Yang (Department of Mathematics
    Journal of Computational Mathematics, 2000, (04) : 413 - 418
  • [24] A priori and a posteriori error analyses of an augmented discontinuous Galerkin formulation
    Barrios, Tomas P.
    Bustinza, Rommel
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2010, 30 (04) : 987 - 1008
  • [25] A posteriori error estimates for the finite element approximation of eigenvalue problems
    Durán, RG
    Padra, C
    Rodríguez, R
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2003, 13 (08): : 1219 - 1229
  • [26] A posteriori error estimates in Adini finite element for eigenvalue problems
    Yang, YD
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2000, 18 (04) : 413 - 418
  • [27] A priori error analysis of discontinuous Galerkin isogeometric analysis approximations of Burgers on surface
    Wang, Liang
    Yuan, Xinpeng
    Xiong, Chunguang
    Wu, Huibin
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 390
  • [28] A posteriori error estimates of mixed discontinuous Galerkin method for a class of Stokes eigenvalue problems
    Sun, Lingling
    Bi, Hai
    Yang, Yidu
    AIMS MATHEMATICS, 2023, 8 (09): : 21270 - 21297
  • [29] Optimal A Priori Error Estimates for Elliptic Interface Problems: Weak Galerkin Mixed Finite Element Approximations
    Raman Kumar
    Bhupen Deka
    Journal of Scientific Computing, 2023, 97
  • [30] Optimal A Priori Error Estimates for Elliptic Interface Problems: Weak Galerkin Mixed Finite Element Approximations
    Kumar, Raman
    Deka, Bhupen
    JOURNAL OF SCIENTIFIC COMPUTING, 2023, 97 (02)